Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2013, Article ID 373275, 14 pages
http://dx.doi.org/10.1155/2013/373275
Review Article

Protein Adaptations in Archaeal Extremophiles

1Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA
2Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA

Received 24 June 2013; Revised 26 July 2013; Accepted 14 August 2013

Academic Editor: Kyung Mo Kim

Copyright © 2013 Christopher J. Reed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Kletzin, General Characteristics and Important Model Organisms, ASM Press, Washington, DC, USA, 2007, Archaea: Molecular and Cellular Biology, Edited by: R. Cavicchioli.
  2. C. Schleper, G. Jurgens, and M. Jonuscheit, “Genomic studies of uncultivated archaea,” Nature Reviews Microbiology, vol. 3, no. 6, pp. 479–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Falb, F. Pfeiffer, P. Palm et al., “Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis,” Genome Research, vol. 15, no. 10, pp. 1336–1343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Baker-Austin and M. Dopson, “Life in acid: pH homeostasis in acidophiles,” Trends in Microbiology, vol. 15, no. 4, pp. 165–171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Sharma, Y. Kawarabayasi, and T. Satyanarayana, “Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications,” Extremophiles, vol. 16, no. 1, pp. 1–19, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. W. D. Grant, “Life at low water activity,” Philosophical Transactions of the Royal Society B, vol. 359, no. 1448, pp. 1249–1266, 2004. View at Google Scholar
  7. C. Ebel, L. Costenaro, M. Pascu et al., “Solvent interactions of halophilic malate dehydrogenase,” Biochemistry, vol. 41, no. 44, pp. 13234–13244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Mevarech, F. Frolow, and L. M. Gloss, “Halophilic enzymes: proteins with a grain of salt,” Biophysical Chemistry, vol. 86, no. 2-3, pp. 155–164, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. D. B. Wright, D. D. Banks, J. R. Lohman, J. L. Hilsenbeck, and L. M. Gloss, “The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases,” Journal of Molecular Biology, vol. 323, no. 2, pp. 327–344, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Hauenstein, C.-M. Zhang, Y.-M. Hou, and J. J. Perona, “Shape-selective RNA recognition by cysteinyl-tRNA synthetase,” Nature Structural and Molecular Biology, vol. 11, no. 11, pp. 1134–1141, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. E. F. Pettersen, T. D. Goddard, C. C. Huang et al., “UCSF chimera—a visualization system for exploratory research and analysis,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1605–1612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Cacciapuoti, F. Fuccio, L. Petraccone et al., “Role of disulfide bonds in conformational stability and folding of 5'-deoxy-5'-methylthioadenosine phosphorylase II from the hyperthermophilic archaeon Sulfolobus solfataricus,” Biochimica et Biophysica Acta, vol. 1824, no. 10, pp. 1136–1143, 2012. View at Google Scholar
  13. A. Szilágyi and P. Závodszky, “Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey,” Structure, vol. 8, no. 5, pp. 493–504, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Vieille and G. J. Zeikus, “Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability,” Microbiology and Molecular Biology Reviews, vol. 65, no. 1, pp. 1–43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Connaris, J. B. Chaudhuri, M. J. Danson et al., “Expression, reactivation, and purification of enzymes from Haloferax volcanii in Escherichia coli,” Biotechnology and Bioengineering, vol. 64, no. 1, pp. 38–45, 1999. View at Google Scholar
  16. C. Evilia, X. Ming, S. Dassarma, and Y.-M. Hou, “Aminoacylation of an unusual tRNACys from an extreme halophile,” RNA, vol. 9, no. 7, pp. 794–801, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Yonezawa, H. Tokunaga, M. Ishibashi, S. Taura, and M. Tokunaga, “Cloning, expression, and efficient purification in Escherichia coli of a halophilic nucleoside diphosphate kinase from the moderate halophile Halomonas sp. #593,” Protein Expression and Purification, vol. 27, no. 1, pp. 128–133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Evilia and Y.-M. Hou, “Acquisition of an insertion peptide for efficient aminoacylation by a halophile tRNA synthetase,” Biochemistry, vol. 45, no. 22, pp. 6835–6845, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Bae and G. N. Phillips Jr., “Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases,” The Journal of Biological Chemistry, vol. 279, no. 27, pp. 28202–28208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Kumar and R. Nussinov, “Different roles of electrostatics in heat and in cold: adaptation by citrate synthase,” ChemBioChem, vol. 5, no. 3, pp. 280–290, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Tehei and G. Zaccai, “Adaptation to high temperatures through macromolecular dynamics by neutron scattering,” FEBS Journal, vol. 274, no. 16, pp. 4034–4043, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. E. T. Powers and W. E. Balch, “Diversity in the origins of proteostasis networks—a driver for protein function in evolution,” Nature Reviews Molecular Cell Biology, vol. 14, no. 4, pp. 237–248, 2013. View at Google Scholar
  23. K. A. Dill, S. B. Ozkan, M. S. Shell, and T. R. Weikl, “The protein folding problem,” Annual Review of Biophysics, vol. 37, pp. 289–316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. N. C. Fitzkee, P. J. Fleming, H. Gong, N. Panasik Jr., T. O. Street, and G. D. Rose, “Are proteins made from a limited parts list?” Trends in Biochemical Sciences, vol. 30, no. 2, pp. 73–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. J. Tomazic and A. M. Klibanov, “Mechanisms of irreversible thermal inactivation of Bacillusα-amylases,” The Journal of Biological Chemistry, vol. 263, no. 7, pp. 3086–3091, 1988. View at Google Scholar · View at Scopus
  26. F. Mayer, U. Küper, C. Meyer et al., “AMP-forming acetyl coenzyme a synthetase in the outermost membrane of the hyperthermophilic crenarchaeon Ignicoccus hospitalis,” Journal of Bacteriology, vol. 194, no. 6, pp. 1572–1581, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Bräsen, C. Urbanke, and P. Schönheit, “A novel octameric AMP-forming acetyl-CoA synthetase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum,” FEBS Letters, vol. 579, no. 2, pp. 477–482, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Ingram-Smith and K. S. Smith, “AMP-forming acetyl-CoA synthetases in Archaea show unexpected diversity in substrate utilization,” Archaea, vol. 2, no. 2, pp. 95–107, 2007. View at Google Scholar · View at Scopus
  29. P. Del Vecchio, M. Elias, L. Merone et al., “Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus,” Extremophiles, vol. 13, no. 3, pp. 461–470, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. T. Park, H. N. Song, T. Y. Jung et al., “A novel domain arrangement in a monomeric cyclodextrin-hydrolyzing enzyme from the hyperthermophile Pyrococcus furiosus,” Biochimica Et Biophysica Acta, vol. 1834, no. 1, pp. 380–386, 2013. View at Google Scholar
  31. K.-H. Park, T.-J. Kim, T.-K. Cheong, J.-W. Kim, B.-H. Oh, and B. Svensson, “Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family,” Biochimica et Biophysica Acta, vol. 1478, no. 2, pp. 165–185, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Vihinen, “Relationship of protein flexibility to thermostability,” Protein Engineering, vol. 1, no. 6, pp. 477–480, 1987. View at Google Scholar · View at Scopus
  33. G. Cacciapuoti, M. Porcelli, C. Bertoldo, M. De Rosa, and V. Zappia, “Purification and characterization of extremely thermophilic and thermostable 5'-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Purine nucleoside phosphorylase activity and evidence for intersubunit disulfide bonds,” The Journal of Biological Chemistry, vol. 269, no. 40, pp. 24762–24769, 1994. View at Google Scholar · View at Scopus
  34. D. R. Boutz, D. Cascio, J. Whitelegge, L. J. Perry, and T. O. Yeates, “Discovery of a thermophilic protein complex stabilized by topologically interlinked chains,” Journal of Molecular Biology, vol. 368, no. 5, pp. 1332–1344, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. K. J. Woycechowsky and R. T. Raines, “The CXC motif: a functional mimic of protein disulfide isomerase,” Biochemistry, vol. 42, no. 18, pp. 5387–5394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Wilkinson and H. F. Gilbert, “Protein disulfide isomerase,” Biochimica et Biophysica Acta, vol. 1699, no. 1-2, pp. 35–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Karshikoff and R. Ladenstein, “Ion pairs and the thermotolerance of proteins from hyperthermophiles: a “traffic rule” for hot roads,” Trends in Biochemical Sciences, vol. 26, no. 9, pp. 550–556, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. S. Hendsch and B. Tidor, “Do salt bridges stabilize proteins? A continuum electrostatic analysis,” Protein Science, vol. 3, no. 2, pp. 211–226, 1994. View at Google Scholar · View at Scopus
  39. C.-H. Chan, T.-H. Yu, and K.-B. Wong, “Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding,” PLoS ONE, vol. 6, no. 6, Article ID e21624, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Fukuchi and K. Nishikawa, “Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria,” Journal of Molecular Biology, vol. 309, no. 4, pp. 835–843, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. C.-F. Lee, G. I. Makhatadze, and K.-B. Wong, “Effects of charge-to-alanine substitutions on the stability of ribosomal protein L30e from Thermococcus celer,” Biochemistry, vol. 44, no. 51, pp. 16817–16825, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. F. Liu, N. Zhang, X. Liu et al., “Molecular mechanism underlying the interaction of typical Sac10b family proteins with DNA,” PLoS ONE, vol. 7, no. 4, Article ID e34986. View at Publisher · View at Google Scholar
  43. B. Mamat, A. Roth, C. Grimm et al., “Crystal structures and enzymatic properties of three formyltransferases from archaea: environmental adaptation and evolutionary relationship,” Protein Science, vol. 11, no. 9, pp. 2168–2178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Breitung, G. Borner, S. Scholz, D. Linder, K. O. Stetter, and R. K. Thauer, “Salt dependence, kinetic properties and catalytic mechanism of N-formylmethanofuran:tetrahydromethanopterin formyltransferase from the extreme thermophile Methanopyrus kandleri,” European Journal of Biochemistry, vol. 210, no. 3, pp. 971–981, 1992. View at Publisher · View at Google Scholar · View at Scopus
  45. L. D. Unsworth, J. Van Der Oost, and S. Koutsopoulos, “Hyperthermophilic enzymes—stability, activity and implementation strategies for high temperature applications,” FEBS Journal, vol. 274, no. 16, pp. 4044–4056, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. De Champdoré, M. Staiano, M. Rossi, and S. D'Auria, “Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest,” Journal of the Royal Society Interface, vol. 4, no. 13, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Fang, L. Zhang, and D. A. Bazylinski, “Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry,” Trends in Microbiology, vol. 18, no. 9, pp. 413–422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Hay, R. M. Evans, C. Levy et al., “Are the catalytic properties of enzymes from piezophilic organisms pressure adapted?” ChemBioChem, vol. 10, no. 14, pp. 2348–2353, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. B. B. Boonyaratanakornkit, C. B. Park, and D. S. Clark, “Pressure effects on intra- and intermolecular interactions within proteins,” Biochimica et Biophysica Acta, vol. 1595, no. 1-2, pp. 235–249, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Di Giulio, “A comparison of proteins from Pyrococcus furiosus and Pyrococcus abyssi: barophily in the physicochemical properties of amino acids and in the genetic code,” Gene, vol. 346, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Mombelli, E. Shehi, P. Fusi, and P. Tortora, “Exploring hyperthermophilic proteins under pressure: theoretical aspects and experimental findings,” Biochimica et Biophysica Acta, vol. 1595, no. 1-2, pp. 392–396, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Consonni, L. Santomo, P. Fusi, P. Tortora, and L. Zetta, “A single-point mutation in the extreme heat- and pressure- resistant Sso7d protein from Sulfolobus solfataricus leads to a major rearrangement of the hydrophobic core,” Biochemistry, vol. 38, no. 39, pp. 12709–12717, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Fusi, K. Goossens, R. Consonni et al., “Extreme heat- and pressure-resistant 7-kDa protein P2 from the archaeon Sulfolobus solfataricus is dramatically destabilized by a single-point amino acid substitution,” Proteins, vol. 29, no. 3, pp. 381–390, 1997. View at Google Scholar
  54. M. M. C. Sun, R. Caillot, G. Mak, F. T. Robb, and D. S. Clark, “Mechanism of pressure-induced thermostabilization of proteins: studies of glutamate dehydrogenases from the hyperthermophile Thermococcus litoralis,” Protein Science, vol. 10, no. 9, pp. 1750–1757, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Rosenbaum, F. Gabel, M. A. Durá et al., “Effects of hydrostatic pressure on the quaternary structure and enzymatic activity of a large peptidase complex from Pyrococcus horikoshii,” Archives of Biochemistry and Biophysics, vol. 517, no. 2, pp. 104–110, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Simonato, S. Campanaro, F. M. Lauro et al., “Piezophilic adaptation: a genomic point of view,” Journal of Biotechnology, vol. 126, no. 1, pp. 11–25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. F. Abe and K. Horikoshi, “The biotechnological potential of piezophiles,” Trends in Biotechnology, vol. 19, no. 3, pp. 102–108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Huang, G. Krauss, S. Cottaz, H. Driguez, and G. Lipps, “A highly acid-stable and thermostable endo-β-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus,” Biochemical Journal, vol. 385, no. 2, pp. 581–588, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. O. V. Golyshina and K. N. Timmis, “Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments,” Environmental Microbiology, vol. 7, no. 9, pp. 1277–1288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. B. R. Jackson, C. Noble, M. Lavesa-Curto, P. L. Bond, and R. P. Bowater, “Characterization of an ATP-dependent DNA ligase from the acidophilic archaeon “Ferroplasma acidarmanus” Fer1,” Extremophiles, vol. 11, no. 2, pp. 315–327, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Magnet and J. S. Blanchard, “Mechanistic and kinetic study of the ATP-dependent DNA ligase of Neisseria meningitidis,” Biochemistry, vol. 43, no. 3, pp. 710–717, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Rohwerder, T. Gehrke, K. Kinzler, and W. Sand, “Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation,” Applied Microbiology and Biotechnology, vol. 63, no. 3, pp. 239–248, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Luisa Tutino, G. Di Prisco, G. Marino, and D. De Pascale, “Cold-adapted esterases and lipases: from fundamentals to application,” Protein and Peptide Letters, vol. 16, no. 10, pp. 1172–1180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. A. O. Smalas, H. K. Leiros, V. Os et al., “Cold adapted enzymes,” Biotechnology Annual Review, vol. 6, pp. 1–57, 2000. View at Google Scholar
  65. X. Dong and Z. Chen, “Psychrotolerant methanogenic archaea: diversity and cold adaptation mechanisms,” Science China Life Sciences, vol. 55, no. 5, pp. 415–421, 2012. View at Google Scholar
  66. G. Feller, “Protein stability and enzyme activity at extreme biological temperatures,” Journal of Physics, vol. 22, no. 32, Article ID 323101, 2010. View at Publisher · View at Google Scholar
  67. R. Cavicchioli, T. Thomas, and P. M. G. Curmi, “Cold stress response in Archaea,” Extremophiles, vol. 4, no. 6, pp. 321–331, 2000. View at Google Scholar · View at Scopus
  68. S. Dassarma, M. D. Capes, R. Karan et al., “Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from antarctica,” PLoS ONE, vol. 8, no. 3, Article ID e58587, 2013. View at Publisher · View at Google Scholar
  69. R. Karan, M. D. Capes, P. DasSarma et al., “Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi,” BMC Biotechnology, vol. 13, no. 3, 2013. View at Publisher · View at Google Scholar
  70. T. Thomas and R. Cavicchioli, “Archaeal cold-adapted proteins: structural and evolutionary analysis of the elongation factor 2 proteins from psychrophilic, mesophilic and thermophilic methanogens,” FEBS Letters, vol. 439, no. 3, pp. 281–286, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. N. F. W. Saunders, T. Thomas, P. M. G. Curmi et al., “Mechanisms of thermal adaptatation revealed from genomes of the anatarctic Archaea Methanogenium frigidum and Methanacoccoides burtonii,” Genome Research, vol. 13, no. 7, pp. 1580–1588, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. S. D'Amico, C. Gerday, and G. Feller, “Structural determinants of cold adaptation and stability in a large protein,” The Journal of Biological Chemistry, vol. 276, no. 28, pp. 25791–25796, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. D. Georlette, B. Damien, V. Blaise et al., “Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases,” The Journal of Biological Chemistry, vol. 278, no. 39, pp. 37015–37023, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. L. Giaquinto, P. M. G. Curmi, K. S. Siddiqui et al., “Structure and function of cold shock proteins in archaea,” Journal of Bacteriology, vol. 189, no. 15, pp. 5738–5748, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. R. J. M. Russell, U. Gerike, M. J. Danson, D. W. Hough, and G. L. Taylor, “Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium,” Structure, vol. 6, no. 3, pp. 351–362, 1998. View at Google Scholar · View at Scopus
  76. N. Aghajari, F. Van Petegem, V. Villeret et al., “Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases,” Proteins, vol. 50, no. 4, pp. 636–647, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. S. D'Amico, J. S. Sohier, and G. Feller, “Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic α-amylase,” Journal of Molecular Biology, vol. 358, no. 5, pp. 1296–1304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. F. Hasan, A. A. Shah, and A. Hameed, “Industrial applications of microbial lipases,” Enzyme and Microbial Technology, vol. 39, no. 2, pp. 235–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Karan, M. D. Capes, and S. Dassarma, “Function and biotechnology of extremophilic enzymes in low water activity,” Aquatic Biosystems, vol. 8, no. 1, p. 4, 2012. View at Publisher · View at Google Scholar
  80. G. Zhang, G. Huihua, and L. Yi, “Stability of halophilic proteins: from dipeptide attributes to discrimination classifier,” International Journal of Biological Macromolecules, vol. 53, pp. 1–6, 2013. View at Publisher · View at Google Scholar
  81. K. L. Britton, P. J. Baker, M. Fisher et al., “Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 13, pp. 4846–4851, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. O. Dym, M. Mevarech, and J. L. Sussman, “Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium,” Science, vol. 267, no. 5202, pp. 1344–1346, 1995. View at Google Scholar · View at Scopus
  83. F. Frolow, M. Harel, J. L. Sussman, M. Mevarech, and M. Shoham, “Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin,” Nature Structural Biology, vol. 3, no. 5, pp. 452–458, 1996. View at Google Scholar · View at Scopus
  84. D. Madern, C. Ebel, and G. Zaccai, “Halophilic adaptation of enzymes,” Extremophiles, vol. 4, no. 2, pp. 91–98, 2000. View at Google Scholar · View at Scopus
  85. G. Zhang and H. Ge, “Protein hypersaline adaptation: insight from amino acids with machine learning algorithms,” The Protein Journal, vol. 32, no. 4, pp. 239–245, 2013. View at Google Scholar
  86. P. L. Kastritis, N. C. Papandreou, and S. J. Hamodrakas, “Haloadaptation: insights from comparative modeling studies of halophilic archaeal DHFRs,” International Journal of Biological Macromolecules, vol. 41, no. 4, pp. 447–453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Soppa, “From genomes to function: haloarchaea as model organisms,” Microbiology, vol. 152, no. 3, pp. 585–590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. X. Tadeo, B. López-Méndez, T. Trigueros, A. Laín, D. Castaño, and O. Millet, “Structural basis for the aminoacid composition of proteins from halophilic archea,” PLoS Biology, vol. 7, no. 12, Article ID e1000257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. S. B. Richard, D. Madern, E. Garcin, and G. Zaccai, “Halophilic adaptation: novel solvent protein interactions observed in the 2.9 and 2.6 Å resolution structures of the wild type and a mutant of malate dehydrogenase from Haloarcula marismortui,” Biochemistry, vol. 39, no. 5, pp. 992–1000, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Qvist, G. Ortega, X. Tadeo, O. Millet, and B. Halle, “Hydration dynamics of a halophilic protein in folded and unfolded states,” Journal of Physical Chemistry B, vol. 116, no. 10, pp. 3436–3444, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Siglioccolo, A. Paiardini, M. Piscitelli, and S. Pascarella, “Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface,” BMC Structural Biology, vol. 11, article 50, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Müller-Santos, E. M. de Souza, F. D. O. Pedrosa et al., “First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui,” Biochimica et Biophysica Acta, vol. 1791, no. 8, pp. 719–729, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. L. M. Longo, J. Lee, and M. Blaber, “Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 6, pp. 2135–2139, 2013. View at Google Scholar
  94. C. M.-J. Taupin, M. Härtlein, and R. Leberman, “Seryl-tRNA synthetase from the extreme halophile Haloarcula marismortui. Isolation, characterization and sequencing of the gene and its expression in Escherichia coli,” European Journal of Biochemistry, vol. 243, no. 1-2, pp. 141–150, 1997. View at Google Scholar · View at Scopus
  95. C. M.-J. Taupin and R. Leberman, “Archaeabacterial seryl-tRNA synthetases: adaptation to extreme environments and evolutionary analysis,” Journal of Molecular Evolution, vol. 48, no. 4, pp. 408–420, 1999. View at Google Scholar · View at Scopus
  96. G. Zaccai, F. Cendrin, Y. Haik, N. Borochov, and H. Eisenberg, “Stabilization of halophilic malate dehydrogenase,” Journal of Molecular Biology, vol. 208, no. 3, pp. 491–500, 1989. View at Google Scholar · View at Scopus
  97. B.-L. Marg, K. Schweimer, H. Sticht, and D. Oesterhelt, “A two-α-helix extra domain mediates the halophilic character of a plant-type ferredoxin from Halophilic Archaea,” Biochemistry, vol. 44, no. 1, pp. 29–39, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Oren, “Industrial and environmental applications of halophilic microorganisms,” Environmental Technology, vol. 31, no. 8-9, pp. 825–834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Ishibashi, T. Hayashi, C. Yoshida et al., “Increase of salt dependence of halophilic nucleoside diphosphate kinase caused by a single amino acid substitution,” Extremophiles, vol. 17, no. 4, pp. 585–591, 2013. View at Google Scholar
  100. H. Tokunaga, T. Arakawa, and M. Tokunaga, “Engineering of halophilic enzymes: two acidic amino acid residues at the carboxy-terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases,” Protein Science, vol. 17, no. 9, pp. 1603–1610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Enache, T. Itoh, T. Fukushima, R. Usami, L. Dumitru, and M. Kamekura, “Phylogenetic relationships within the family Halobacteriaceae inferred from rpoB′ gene and protein sequences,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 10, pp. 2289–2295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. B. Ollivier, P. Caumette, J.-L. Garcia, and R. A. Mah, “Anaerobic bacteria from hypersaline environments,” Microbiological Reviews, vol. 58, no. 1, pp. 27–38, 1994. View at Google Scholar · View at Scopus
  103. W. D. Grant, Half A Lifetime in soda lakes, Springer, New York, NY, USA, 2004, Halophilic Microorganisms, Edited by: A. Ventosa.
  104. K. Horikoshi, “Alkaliphiles: some applications of their products for biotechnology,” Microbiology and Molecular Biology Reviews, vol. 63, no. 4, pp. 735–750, 1999. View at Google Scholar · View at Scopus
  105. S. Siddaramappa, J. F. Challacombe, R. E. De Castro et al., “A comparative genomics perspective on the geneticcontent of the alkaliphilic haloarchaeon Natrialbamagadii ATCC 43099T,” BMC Genomics, p. 165, 2012. View at Publisher · View at Google Scholar · View at Scopus
  106. M. I. Giménez, C. A. Studdert, J. J. Sánchez, and R. E. De Castro, “Extracellular protease of Natrialba magadii: purification and biochemical characterization,” Extremophiles, vol. 4, no. 3, pp. 181–188, 2000. View at Google Scholar · View at Scopus
  107. N. Eswar, B. Webb, M. A. Marti-Renom et al., “Comparative protein structure modeling using Modeller,” Current Protocols in Bioinformatics, vol. 5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38, 1996. View at Publisher · View at Google Scholar · View at Scopus
  109. J. Goecks, A. Nekrutenko, J. Taylor, and T. Galaxy Team, “Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences,” Genome Biology, vol. 11, no. 8, p. R86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. S. R. Eddy, “Profile hidden Markov models,” Bioinformatics, vol. 14, no. 9, pp. 755–763, 1998. View at Google Scholar · View at Scopus