Table of Contents Author Guidelines Submit a Manuscript
Anatomy Research International
Volume 2013, Article ID 409534, 11 pages
http://dx.doi.org/10.1155/2013/409534
Research Article

Locomotor Anatomy and Behavior of Patas Monkeys (Erythrocebus patas) with Comparison to Vervet Monkeys (Cercopithecus aethiops)

University of California, Santa Cruz, Social Sciences 1, 1156 High Street, Santa Cruz, CA 95064, USA

Received 1 July 2013; Accepted 26 August 2013

Academic Editor: David Tai Wai Yew

Copyright © 2013 Adrienne L. Zihlman and Carol E. Underwood. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Lernould, “Classification and geographical distribution of guenons: a review,” in A Primate Radiation: Evolutionary Biology of the African Guenons, A. Gautier-Hion, F. Bourliere, J. Gautier, and J. Kingdon, Eds., pp. 54–78, Cambridge University Press, Cambridge, UK, 1988. View at Google Scholar
  2. K. R. L. Hall, “Ecology and behavior of baboons, patas, and vervet monkeys in Uganda,” in The Baboon in Medical Research, H. Vagtborg, Ed., pp. 43–61, University of Texas Press, Austin, Tex, USA, 1965. View at Google Scholar
  3. K. R. L. Hall, “Behaviour and ecology of the wild patas monkey, Erythrocebus patas, in Uganda,” Journal of Zoology, vol. 148, pp. 15–87, 1965. View at Google Scholar
  4. S. L. Washburn and D. Hamburg, “The study of primate behavior,” in Primate Behavior. Field Studies of Monkeys and Apes, I. deVore, Ed., pp. 1–13, Holt, Rinehart and Winston, New York, NY, USA, 1965. View at Google Scholar
  5. E. Strasser, “Hindlimb proportions, allometry, and biomechanics in Old World monkeys (primates, cercopithecidae),” American Journal of Physical Anthropology, vol. 87, no. 2, pp. 187–213, 1992. View at Google Scholar · View at Scopus
  6. J. K. Kingdon, “Comparative morphology of hands and feet in the genus Cercopithecus,” in A Primate Radiation: Evolutionary Biology of the African Guenons, A. Gautier-Hion, F. Bourliere, J. Gautier, and J. Kingdon, Eds., pp. 184–193, Cambridge University Press, Cambridge, UK, 1988. View at Google Scholar
  7. D. L. Gebo and E. J. Sargis, “Terrestrial adaptations in the postcranial skeletons of guenons,” American Journal of Physical Anthropology, vol. 93, no. 3, pp. 341–371, 1994. View at Google Scholar · View at Scopus
  8. A. H. Schultz, “The comparative uniformity of the Cercopithecoidea,” in Old World Monkeys, J. R. Napier and P. H. Napier, Eds., pp. 39–51, Academic Press, New York, NY, USA, 1970. View at Google Scholar
  9. C. D. Wood, Morphology and biomechanical adaptations in the hindlimb of Erythrocebus patas for high speed terrestrial locomotion [PhD Dissertation], University of Washington, Seattle, Wash, USA, 1973.
  10. J. R. Hurov, “Terrestrial locomotion and back anatomy in vervets (Cercopithecus aethiops) and patas monkeys (Erythrocebus patas),” American Journal of Physical Anthropology, vol. 13, pp. 297–311, 1987. View at Google Scholar
  11. B. R. Benefit, “Victoriapithecus: the key to Old World monkey and catarrhine origins,” Evolutionary Anthropology, vol. 7, no. 5, pp. 155–174, 1999. View at Google Scholar · View at Scopus
  12. T. Harrison, “New postcranial remains of Victoriapithecus from the middle Miocene of Kenya,” Journal of Human Evolution, vol. 18, no. 1, pp. 3–54, 1989. View at Google Scholar · View at Scopus
  13. J. E. Cronin and V. M. Sarich, “Molecular evidence for dual origin of mangabeys among Old World monkeys,” Nature, vol. 260, no. 5553, pp. 700–702, 1976. View at Publisher · View at Google Scholar · View at Scopus
  14. A. C. van der Kuyl, C. L. Kuiken, J. T. Dekker, and J. Goudsmit, “Phylogeny of African monkeys based upon mitochondrial 12S rRNA sequences,” Journal of Molecular Evolution, vol. 40, no. 2, pp. 173–180, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. T. R. Disotell, “The phylogeny of Old World monkeys,” Evolutionary Anthropology, vol. 5, no. 1, pp. 18–24, 1996. View at Google Scholar · View at Scopus
  16. J. R. Napier and P. H. Napier, A Handbook of Living Primates, Academic Press, New York, NY, USA, 1967.
  17. R. J. Smith and W. L. Jungers, “Body mass in comparative primatology,” Journal of Human Evolution, vol. 32, no. 6, pp. 523–559, 1997. View at Google Scholar · View at Scopus
  18. J. Chism, T. Rowell, and D. Olson, “Life history patterns of female patas monkeys,” in Female Primates: Studies by Women Primatologists, M. F. Small, Ed., pp. 175–190, Alan R. Liss, NewYork, NY, USA, 1984. View at Google Scholar
  19. D. R. Bolter and A. L. Zihlman, “Morphometric analysis of growth and development in wild-collected vervet monkeys (Cercopithecus aethiops), with implications for growth patterns in Old World monkeys, apes and humans,” Journal of Zoology, vol. 260, no. 1, pp. 99–110, 2003. View at Google Scholar · View at Scopus
  20. T. I. Grand, “The anatomy of growth and its relation to locomotor capacity in Macaca,” in Advances in the Study of Mammalian Behavior, J. F. Eisenberg and D. G. Kleiman, Eds., vol. 7, pp. 5–23, American Society of Mammalogists, 1983. View at Google Scholar
  21. A. H. Schultz, “The technique of measuring the outer body of human fetuses and of primates in general,” Contributions to Embryology, vol. 117, pp. 213–257, 1929. View at Google Scholar
  22. T. I. Grand, “Body weight: its relation to tissue composition, segment distribution, and motor function. I. Interspecific comparisons,” American Journal of Physical Anthropology, vol. 47, no. 2, pp. 211–239, 1977. View at Google Scholar · View at Scopus
  23. A. L. Zihlman, R. K. McFarland, and C. E. Underwood, “Functional anatomy and adaptation of male gorillas (Gorilla gorilla gorilla) with comparison to male orangutans (Pongo pygmaeus),” Anatomical Record, vol. 294, no. 11, pp. 1842–1855, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. L. Zihlman and C. E. Underwood, “Profiling primates: anatomical methods for data collection, analysis and comparison,” American Journal of Physical Anthropology, vol. 147, supplement 54, p. 35, 2012. View at Google Scholar
  25. T. I. Grand, “Body weight: its relation to tissue composition, segment distribution, and motor function. II. Development of Macaca mulatta,” American Journal of Physical Anthropology, vol. 47, no. 2, pp. 241–248, 1977. View at Google Scholar · View at Scopus
  26. A. L. Zihlman and R. K. McFarland, “Body mass in lowland gorillas: a quantitative analysis,” American Journal of Physical Anthropology, vol. 113, pp. 61–78, 2000. View at Google Scholar
  27. A. H. Schultz, “Proportions, variability and asymmetries of the long bones of the limbs and the clavicles in man and apes,” Human Biology, vol. 9, pp. 281–328, 1937. View at Google Scholar
  28. A. H. Schultz, “Relations between the lengths of the main parts of the foot skeleton in primates,” in Folia Primatologica, vol. 1, pp. 150–171, 1963. View at Google Scholar
  29. A. H. Schultz, “Postembryonic age changes,” in Primatologia I: Handbook of Primatology, H. Hofer, A. H. Schultz, and D. Starck, Eds., pp. 887–964, Karger, Basel, Switzerland, 1956. View at Google Scholar
  30. A. L. Zihlman, C. E. Underwood, and D. R. Bolter, “Locomotor anatomy of patas monkeys (Erythrocebus patas),” American Journal of Physical Anthropology, vol. 150, supplement 56, p. 45, 2013. View at Google Scholar
  31. C. E. Underwood, D. R. Bolter, and A. L. Zihlman, “Locomotor anatomy of gray langurs (Semnopithecus entellus),” American Journal of Physical Anthropology, vol. 150, supplement 56, p. 45, 2013. View at Google Scholar
  32. A. B. Howell, Speed in Animals, University of Chicago Press, Chicago, Ill, USA, 1944.
  33. W. K. Gregory, “Notes on the principles of quadrupedal locomotion and on the mechanism of the limbs in hoofed animals,” Annals of the New York Academy of Sciences, vol. 221, pp. 267–294, 1912. View at Google Scholar
  34. B. A. Patel, “Not so fast: speed effects on forelimb kinematics in Cercopithecine monkeys and implications for digitigrade postures in primates,” American Journal of Physical Anthropology, vol. 140, no. 1, pp. 92–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. B. A. Patel and J. D. Polk, “Distal forelimb kinematics in Erythrocebus patas and Papio anubis during walking and galloping,” International Journal of Primatology, vol. 31, no. 2, pp. 191–207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. A Primate Radiation: Evolutionary Biology of the African Guenons, A. Gautier-Hion, F. Bourliere , J. Gautier, and J. Kingdon, Eds., Cambridge University Press, Cambridge, U.K, 1988.
  37. M. E. Glenn and M. Cords, Eds., The Guenons. Diversity and Adaptation in African Monkeys, Kluwer Academic/Plenum, New York, NY, USA, 2002.
  38. T. T. Struhsaker and J. S. Gartlan, “Observations on the behaviour and ecology of the patas monkey (Erythrocebus patas) in the Waza Reserve, Cameroon,” Journal of Zoology, vol. 161, no. 1, pp. 49–63, 1970. View at Publisher · View at Google Scholar
  39. N. Nakagawa, “Activity budget and diet of patas monkeys in Kala Maloue National Park, Cameroon: a preliminary report,” Primates, vol. 30, no. 1, pp. 27–34, 1989. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Nakagawa, “Differential habitat utilization by patas monkeys (Erythrocebus patas) and tantalus monkeys (Cercopithecus aethiops tantalus) living sympatrically in northern Cameroon,” American Journal of Primatology, vol. 49, pp. 243–264, 1999. View at Google Scholar
  41. J. Chism and T. Rowell, “The natural history of patas monkeys,” in A Primate Radiation: Evolutionary Biology of the African Monkeys, A. Gautier-Hion, F. Bourliere, J. Gautier, and J. Kingdon, Eds., pp. 412–438, Cambridge University Press, Cambridge, UK, 1988. View at Google Scholar
  42. L. A. Isbell, “Diet for a small primate: insectivory and gummivory in the (large) patas monkey (Erythrocebus patas pyrrhonotus),” American Journal of Primatology, vol. 45, pp. 381–398, 1998. View at Google Scholar
  43. L. A. Isbell, J. D. Pruetz, and T. P. Young, “Movements of vetvets (Cercopithecus aethiops) and patas monkeys (Erythrocebus patas) as estimators of food resource size, density, and distribution,” Behavioral Ecology and Sociobiology, vol. 42, no. 2, pp. 123–133, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. K. L. Enstam and L. A. Isbell, “Microhabitat preference and vertical use of space by patas monkeys (Erythrocebus patas) in relation to predation risk and habitat structure,” Folia Primatologica, vol. 75, no. 2, pp. 70–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. L. A. Isbell, J. D. Pruetz, M. Lewis, and T. P. Young, “Locomotor activity differences between sympatric patas monkeys (Erythrocebus patas) and vervet monkeys (Cercopithecus aethiops): implications for the evolution of long hindlimb length in Homo,” American Journal of Physical Anthropology, vol. 105, pp. 199–207, 1998. View at Google Scholar
  46. L. A. Isbell, J. D. Pruetz, B. M. Nzuma, and T. P. Young, “Comparing measures of travel distances in primates: methodological considerations and socioecological implications,” American Journal of Primatology, vol. 48, pp. 887–898, 1999. View at Google Scholar
  47. N. Nakagawa, “Difference in food selection between patas monkeys (Erythrocebus patas) and tantalus monkeys (Cercopithecus aethiops tantalus) in Kala Maloue National Park, Cameroon, in relation to nutrient content,” Primates, vol. 44, no. 1, pp. 3–11, 2003. View at Google Scholar · View at Scopus
  48. L. A. Isbell, J. M. Rothman, P. J. Young, and K. Rudolph, “Nutritional benefits of Crematogaster mimosae ants and Acacia drepanolobium gum for patas monkeys and vervets in Laikipia, Kenya,” American Journal of Physical Anthropology, vol. 150, pp. 286–300, 2013. View at Google Scholar
  49. N. Nakagawa, “Seasonal, sex, and interspecific differences in activity time budgets and diets of patas monkeys (Erythrocebus patas) and tantalus monkeys (Cercopithecus aethiops tantalus), living sympatrically in northern Cameroon,” Primates, vol. 41, no. 2, pp. 161–174, 2000. View at Google Scholar · View at Scopus
  50. N. Nakagawa, “Foraging energetics in patas monkeys (Erythrocebus patas) and tantalus monkeys (Cercopithecus aethiops tantalus): implications for reproductive seasonality,” American Journal of Primatology, vol. 52, pp. 169–185, 2000. View at Google Scholar
  51. S. A. Mahoney, “Cost of locomotion and heat balance during rest and runninng from 0 to 55°C in a patas monkey,” Journal of Applied Physiology, vol. 49, no. 5, pp. 789–800, 1980. View at Google Scholar · View at Scopus
  52. C. V. Gisolfi, K. Sato, P. T. Wall, and F. Sato, “In vivo and in vitro characteristics of eccrine sweating in patas and rhesus monkeys,” Journal of Applied Physiology, vol. 53, no. 2, pp. 425–431, 1982. View at Google Scholar · View at Scopus
  53. M. A. Kolka and R. S. Elizondo, “Thermoregulation in Erythrocebus patas: a thermal balance study,” Journal of Applied Physiology, vol. 55, no. 5, pp. 1603–1608, 1983. View at Google Scholar · View at Scopus