Table of Contents Author Guidelines Submit a Manuscript
Anesthesiology Research and Practice
Volume 2011, Article ID 124898, 12 pages
http://dx.doi.org/10.1155/2011/124898
Review Article

Perioperative Nerve Blockade: Clues from the Bench

1Pain Center, Department of Anesthesiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
2Department of Cell Biology and Morphology, University of Lausanne, 1011 Lausanne, Switzerland
3Pain Research Center and Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA

Received 6 January 2011; Revised 23 March 2011; Accepted 6 May 2011

Academic Editor: Gabriella Iohom

Copyright © 2011 M. R. Suter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. M. Block, S. S. Liu, A. J. Rowlingson, A. R. Cowan, J. A. Cowan, and C. L. Wu, “Efficacy of postoperative epidural analgesia: a meta-analysis,” Journal of the American Medical Association, vol. 290, no. 18, pp. 2455–2463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Richman, S. S. Liu, G. Courpas et al., “Does continuous peripheral nerve block provide superior pain control to opioids? A meta-analysis,” Anesthesia and Analgesia, vol. 102, no. 1, pp. 248–257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. J. Barrington and D. A. Scott, “Do we need to justify epidural analgesia beyond pain relief?” The Lancet, vol. 372, no. 9638, pp. 514–516, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. P. F. White and H. Kehlet, “Postoperative pain management and patient outcome: time to return to work!,” Anesthesia and Analgesia, vol. 104, no. 3, pp. 487–489, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Kehlet, T. S. Jensen, and C. J. Woolf, “Persistent postsurgical pain: risk factors and prevention,” Lancet, vol. 367, no. 9522, pp. 1618–1625, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Hadzic, T. T. Houle, X. Capdevila, and B. M. Ilfeld, “Femoral nerve block for analgesia in patients having knee arthroplasty,” Anesthesiology, vol. 113, no. 5, pp. 1014–1015, 2010. View at Publisher · View at Google Scholar
  7. H. Obata, S. Saito, N. Fujita, Y. Fuse, K. Ishizaki, and F. Goto, “Epidural block with mepivacaine before surgery reduces long-term post- thoracotomy pain,” Canadian Journal of Anaesthesia, vol. 46, no. 12, pp. 1127–1132, 1999. View at Google Scholar · View at Scopus
  8. M. Şentürk, P. E. Özcan, G. K. Talu et al., “The effects of three different analgesia techniques on long-term postthoracotomy pain,” Anesthesia and Analgesia, vol. 94, no. 1, pp. 11–15, 2002. View at Google Scholar · View at Scopus
  9. P. M. Kairaluoma, M. S. Bachmann, P. H. Rosenberg, and P. J. Pere, “Preincisional paravertebral block reduces the prevalence of chronic pain after breast surgery,” Anesthesia and Analgesia, vol. 103, no. 3, pp. 703–708, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Nikolajsen, S. Ilkjaer, J. H. Christensen, K. Krøner, and T. S. Jensen, “Randomised trial of epidural bupivacaine and morphine in prevention of stump and phantom pain in lower-limb amputation,” Lancet, vol. 350, no. 9088, pp. 1353–1357, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Gottschalk, S. Sharma, J. Ford, M. E. Durieux, and M. Tiouririne, “The role of the perioperative period in recurrence after cancer surgery,” Anesthesia and Analgesia, vol. 110, no. 6, pp. 1636–1643, 2010. View at Publisher · View at Google Scholar
  12. C.-C. Chang, H.-C. Lin, H.-W. Lin, and H.-C. Lin, “Anesthetic management and surgical site infections in total hip or knee replacement: a population-based study,” Anesthesiology, vol. 113, no. 2, pp. 279–284, 2010. View at Publisher · View at Google Scholar
  13. A. Latremoliere and C. J. Woolf, “Central sensitization: a generator of pain hypersensitivity by central neural plasticity,” Journal of Pain, vol. 10, no. 9, pp. 895–926, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. J. Woolf and M. W. Salter, “Neuronal plasticity: increasing the gain in pain,” Science, vol. 288, no. 5472, pp. 1765–1768, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. P. D. Wall, S. Waxman, and A. I. Basbaum, “Ongoing activity in peripheral nerve: injury discharge,” Experimental Neurology, vol. 45, no. 3, pp. 576–589, 1974. View at Google Scholar · View at Scopus
  16. P. D. Wall and M. Devor, “Sensory afferent impulses originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats,” Pain, vol. 17, no. 4, pp. 321–339, 1983. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Devor, “Responses of nerves to injury in relation to neuropathic pain,” in Textbook of Pain, S. B. McMahon and M. Koltzenburg, Eds., pp. 905–928, Elsevier, New York, NY, USA, 5th edition, 2006. View at Google Scholar
  18. R. Amir, J. D. Kocsis, and M. Devor, “Multiple interacting sites of ectopic spike electrogenesis in primary sensory neurons,” Journal of Neuroscience, vol. 25, no. 10, pp. 2576–2585, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. G. J. Bennett and Y. K. Xie, “A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man,” Pain, vol. 33, no. 1, pp. 87–107, 1988. View at Google Scholar · View at Scopus
  20. T. Mosconi and L. Kruger, “Fixed-diameter polyethylene cuffs applied to the rat sciatic nerve induce a painful neuropathy: ultrastructural morphometric analysis of axonal alterations,” Pain, vol. 64, no. 1, pp. 37–57, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. K. C. Kajander and G. J. Bennett, “Onset of a painful peripheral neuropathy in rat: a partial and differential deafferentation and spontaneous discharge in Aβ and Aδ primary afferent neurons,” Journal of Neurophysiology, vol. 68, no. 3, pp. 734–744, 1992. View at Google Scholar · View at Scopus
  22. K. Chung, H. J. Kim, H. S. Na, M. J. Park, and J. M. Chung, “Abnormalities of sympathetic innervation in the area of an injured peripheral nerve in a rat model of neuropathic pain,” Neuroscience Letters, vol. 162, no. 1-2, pp. 85–88, 1993. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Decosterd and C. J. Woolf, “Spared nerve injury: an animal model of persistent peripheral neuropathic pain,” Pain, vol. 87, no. 2, pp. 149–158, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. K. L. Seburn, P. A. Catlin, J. F. Dixon, M. H. Lee, M. S. Matteson, and T. C. Cope, “Decline in spontaneous activity of group Aαβ sensory afferents after sciatic nerve axotomy in rat,” Neuroscience Letters, vol. 274, no. 1, pp. 41–44, 1999. View at Publisher · View at Google Scholar
  25. M. Michaelis, X. Liu, and W. Jänig, “Axotomized and intact muscle afferents but no skin afferents develop ongoing discharges of dorsal root ganglion origin after peripheral nerve lesion,” Journal of Neuroscience, vol. 20, no. 7, pp. 2742–2748, 2000. View at Google Scholar · View at Scopus
  26. M. Tal and E. Eliav, “Abnormal discharge originates at the site of nerve injury in experimental constriction neuropathy (CCI) in the rat,” Pain, vol. 64, no. 3, pp. 511–518, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Liu, K. Chung, and J. M. Chung, “Ectopic discharges and adrenergic sensitivity of sensory neurons after spinal nerve injury,” Brain Research, vol. 849, no. 1-2, pp. 244–247, 1999. View at Publisher · View at Google Scholar
  28. H. Chul Han, D. Hyun Lee, and J. Mo Chung, “Characteristics of ectopic discharges in a rat neuropathic pain model,” Pain, vol. 84, no. 2-3, pp. 253–261, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. K. H. Blenk, W. Jänig, M. Michaelis, and C. Vogel, “Prolonged injury discharge in unmyelinated nerve fibres following transection of the sural nerve in rats,” Neuroscience Letters, vol. 215, no. 3, pp. 185–188, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Zimmermann, “Pathobiology of neuropathic pain,” European Journal of Pharmacology, vol. 429, no. 1–3, pp. 23–37, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Wu, M. Ringkamp, T. V. Hartke et al., “Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers,” The Journal of Neuroscience, vol. 21, no. 8, p. RC140, 2001. View at Google Scholar
  32. M. Michaelis, C. Vogel, K. H. Blenk, and W. Jänig, “Algesics excite axotomised afferent nerve fibres within the first hours following nerve transection in rats,” Pain, vol. 72, no. 3, pp. 347–354, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. Ali, M. Ringkamp, T. V. Hartke et al., “Uninjured C-fiber nociceptors develop spontaneous activity and α-adrenergic sensitivity following L spinal nerve ligation in monkey,” Journal of Neurophysiology, vol. 81, no. 2, pp. 455–466, 1999. View at Google Scholar · View at Scopus
  34. Y. W. Yoon, H. S. Na, and J. M. Chung, “Contributions of injured and intact afferents to neuropathic pain in an experimental rat model,” Pain, vol. 64, no. 1, pp. 27–36, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Xie, J. A. Strong, J. T. A. Meij, J. M. Zhang, and L. Yu, “Neuropathic pain: early spontaneous afferent activity is the trigger,” Pain, vol. 116, no. 3, pp. 243–256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Ma, Y. Shu, Z. Zheng et al., “Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons,” Journal of Neurophysiology, vol. 89, no. 3, pp. 1588–1602, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. Q. Sun, H. Tu, G. G. Xing, J. S. Han, and Y. Wan, “Ectopic discharges from injured nerve fibers are highly correlated with tactile allodynia only in early, but not late, stage in rats with spinal nerve ligation,” Experimental Neurology, vol. 191, no. 1, pp. 128–136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Xu and T. J. Brennan, “Comparison of skin incision vs. skin plus deep tissue incision on ongoing pain and spontaneous activity in dorsal horn neurons,” Pain, vol. 144, no. 3, pp. 329–339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. S. Mogil, “Animal models of pain: progress and challenges,” Nature Reviews Neuroscience, vol. 10, no. 4, pp. 283–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. J. S. Mogil, K. D. Davis, and S. W. Derbyshire, “The necessity of animal models in pain research,” Pain, vol. 151, no. 1, pp. 12–17, 2010. View at Publisher · View at Google Scholar
  41. R. Hill, “NK1 (substance P) receptor antagonists—why are they not analgesic in humans?” Trends in Pharmacological Sciences, vol. 21, no. 7, pp. 244–246, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. M. S. Wallace, M. C. Rowbotham, N. P. Katz et al., “A randomized, double-blind, placebo-controlled trial of a glycine antagonist in neuropathic pain,” Neurology, vol. 59, no. 11, pp. 1694–1700, 2002. View at Google Scholar · View at Scopus
  43. M. S. Wallace, M. Rowbotham, G. J. Bennett, T. S. Jensen, R. Pladna, and S. Quessy, “A multicenter, double-blind, randomized, placebo-controlled crossover evaluation of a short course of 4030W92 in patients with chronic neuropathic pain,” Journal of Pain, vol. 3, no. 3, pp. 227–233, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. R. L. Rauck, M. S. Wallace, A. W. Burton, L. Kapural, and J. M. North, “Intrathecal ziconotide for neuropathic pain: a review,” Pain Practice, vol. 9, no. 5, pp. 327–337, 2009. View at Publisher · View at Google Scholar
  45. N. E. Lane, T. J. Schnitzer, C. A. Birbara et al., “Tanezumab for the treatment of pain from osteoarthritis of the knee,” New England Journal of Medicine, vol. 363, no. 16, pp. 1521–1531, 2010. View at Publisher · View at Google Scholar
  46. J. N. Wood, “Nerve growth factor and pain,” New England Journal of Medicine, vol. 363, no. 16, pp. 1572–1573, 2010. View at Publisher · View at Google Scholar
  47. N. R. Gavva, R. Tamir, Y. Qu et al., “AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties,” Journal of Pharmacology and Experimental Therapeutics, vol. 313, no. 1, pp. 474–484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Y. Wong and N. R. Gavva, “Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: recent advances and setbacks,” Brain Research Reviews, vol. 60, no. 1, pp. 267–277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Bach, M. F. Noreng, and N. U. Tjellden, “Phantom limb pain in amputees during the first 12 months following limb amputation, after preoperative lumbar epidural blockade,” Pain, vol. 33, no. 3, pp. 297–301, 1988. View at Google Scholar · View at Scopus
  50. X. Capdevila, P. Pirat, S. Bringuier et al., “Continuous peripheral nerve blocks in hospital wards after orthopedic surgery: a multicenter prospective analysis of the quality of postoperative analgesia and complications in 1,416 patients,” Anesthesiology, vol. 103, no. 5, pp. 1035–1045, 2005. View at Publisher · View at Google Scholar
  51. M. R. Suter, M. Papaloïzos, C. B. Berde et al., “Development of neuropathic pain in the rat spared nerve injury model is not prevented by a peripheral nerve block,” Anesthesiology, vol. 99, no. 6, pp. 1402–1408, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. W. A. Schmalhofer, J. Calhoun, R. Burrows et al., “ProTx-II, a selective inhibitor of Na1.7 sodium channels, blocks action potential propagation in nociceptors,” Molecular Pharmacology, vol. 74, no. 5, pp. 1476–1484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Fletcher, V. Kayser, and G. Guilbaud, “Influence of timing of administration on the analgesic effect of bupivacaine infiltration in carrageenin-injected rats,” Anesthesiology, vol. 84, no. 5, pp. 1129–1137, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Fletcher, V. Kayser, and G. Guilbaud, “The influence of the timing of bupivacaine infiltration on the time course of inflammation induced by two carrageenin injections seven days apart,” Pain, vol. 69, no. 3, pp. 303–309, 1997. View at Publisher · View at Google Scholar · View at Scopus
  55. S. D. Guerios, Z. Y. Wang, K. Boldon, W. Bushman, and D. E. Bjorling, “Lidocaine prevents referred hyperalgesia associated with cystitis,” Neurourology and Urodynamics, vol. 28, no. 5, pp. 455–460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. D. G. Ririe, D. Barclay, H. Prout, C. Tong, J. R. Tobin, and J. C. Eisenach, “Preoperative sciatic nerve block decreases mechanical allodynia more in young rats: is preemptive analgesia developmentally modulated?” Anesthesia and Analgesia, vol. 99, no. 1, pp. 140–145, 2004. View at Google Scholar · View at Scopus
  57. P. M. Dougherty, C. J. Garrison, and S. M. Carlton, “Differential influence of local anesthetic upon two models of experimentally induced peripheral mononeuropathy in the rat,” Brain Research, vol. 570, no. 1-2, pp. 109–115, 1992. View at Google Scholar · View at Scopus
  58. L. D. M. Batista, I. M. Batista, J. P. Almeida, C. H. Carvalho, S. B. De Castro-Costa, and C. M. De Castro-Costa, “Preemptive analgesic effect of lidocaine in a chronic neuropathic pain model,” Arquivos de Neuro-Psiquiatria, vol. 67, no. 4, pp. 1088–1092, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. L. Sotgiu, A. Castagna, M. Lacerenza, and P. Marchettini, “Pre-injury lidocaine treatment prevents thermal hyperalgesia and cutaneous thermal abnormalities in a rat model of peripheral neuropathy,” Pain, vol. 61, no. 1, pp. 3–10, 1995. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Abdi, D. H. Lee, S. K. Park, and J. M. Chung, “Lack of pre-emptive analgesic effects of local anaesthetics on neuropathic pain,” British Journal of Anaesthesia, vol. 85, no. 4, pp. 620–623, 2000. View at Google Scholar · View at Scopus
  61. R. W. Colburn, J. A. Deleo, A. J. Rickman, M. P. Yeager, P. Kwon, and W. F. Hickey, “Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat,” Journal of Neuroimmunology, vol. 79, no. 2, pp. 163–175, 1997. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Yamamoto, N. Shimoyama, and T. Mizuguchi, “Role of the injury discharge in the development of thermal hyperesthesia after sciatic nerve constriction injury in the rat,” Anesthesiology, vol. 79, no. 5, pp. 993–1002, 1993. View at Google Scholar · View at Scopus
  63. S. E. Lee and J. H. Kim, “Involvement of substance P and calcitonin gene-related peptide in development and maintenance of neuropathic pain from spinal nerve injury model of rat,” Neuroscience Research, vol. 58, no. 3, pp. 245–249, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Mao, D. D. Price, D. J. Mayer, J. Lu, and R. L. Hayes, “Intrathecal MK-801 and local nerve anesthesia synergistically reduce nociceptive behaviors in rats with experimental peripheral mononeuropathy,” Brain Research, vol. 576, no. 2, pp. 254–262, 1992. View at Publisher · View at Google Scholar · View at Scopus
  65. M. E. Gentili, J. X. Mazoit, K. Samii, and D. Fletcher, “The effect of a sciatic nerve block on the development of inflammation in carrageenan injected rats,” Anesthesia and Analgesia, vol. 89, no. 4, pp. 979–984, 1999. View at Publisher · View at Google Scholar · View at Scopus
  66. J. P. Estebe, M. E. Gentili, P. Le Corre, C. Leduc, J. P. Moulinoux, and C. Ecoffey, “Contralateral effect of amitriptyline and bupivacaine for sciatic nerve block in an animal model of inflammation,” British Journal of Anaesthesia, vol. 93, no. 5, pp. 705–709, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. J. P. Estèbe, M. E. Gentili, P. Le Corre, R. Le Verge, J. P. Moulinoux, and C. Ecoffey, “Sciatic nerve block with bupivacaine-loaded microspheres prevents hyperalgesia in an inflammatory animal model,” Canadian Journal of Anesthesia, vol. 49, no. 7, pp. 690–693, 2002. View at Google Scholar · View at Scopus
  68. C.-F. Wang, C. Pancaro, P. Gerner, and G. Strichartz, “Prolonged suppression of postincisional pain by a slow-release formulation of lidocaine,” Anesthesiology, vol. 114, no. 1, pp. 135–149, 2011. View at Publisher · View at Google Scholar
  69. B. Borghi, M. D'Addabbo, P. F. White et al., “The use of prolonged peripheral neural blockade after lower extremity amputation: the effect on symptoms associated with phantom limb syndrome,” Anesthesia and Analgesia, vol. 111, no. 5, pp. 1308–1315, 2010. View at Publisher · View at Google Scholar
  70. Y. P. Feng, K. Yang, and Y. Q. Li, “Activation of capsaicin receptors on the sciatic nerve induces FOS expression in the spinal dorsal horn of adult rats,” NeuroSignals, vol. 11, no. 3, pp. 151–157, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Lykkegaard, B. Lauritzen, L. Tessem, P. Weikop, and O. Svendsen, “Local anaesthetics attenuates spinal nociception and HPA-axis activation during experimental laparotomy in pigs,” Research in Veterinary Science, vol. 79, no. 3, pp. 245–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Beloeil, M. Gentili, D. Benhamou, and J. X. Mazoit, “The effect of a peripheral block on inflammation-induced prostaglandin E2 and cyclooxygenase expression in rats,” Anesthesia and Analgesia, vol. 109, no. 3, pp. 943–950, 2009. View at Google Scholar · View at Scopus
  73. E. Combettes, D. Benhamou, J. X. Mazoit, and H. Beloeil, “Comparison of a bupivacaine peripheral nerve block and systemic ketoprofen on peripheral inflammation and hyperalgesia in rats,” European Journal of Anaesthesiology, vol. 27, no. 7, pp. 642–647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Scholz, D. C. Broom, D.-H. Youn et al., “Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury,” Journal of Neuroscience, vol. 25, no. 32, pp. 7317–7323, 2005. View at Publisher · View at Google Scholar
  75. R.-D. Gosselin, M. R. Suter, R.-R. Ji, and I. Decosterd, “Glial cells and chronic pain,” Neuroscientist, vol. 16, no. 5, pp. 519–531, 2010. View at Publisher · View at Google Scholar
  76. M. R. Suter, Y. R. Wen, I. Decosterd, and R. R. Ji, “Do glial cells control pain?” Neuron Glia Biology, vol. 3, no. 3, pp. 255–268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. Y. R. Wen, M. R. Suter, Y. Kawasaki et al., “Nerve conduction blockade in the sciatic nerve prevents but does not reverse the activation of p38 mitogen-activated protein kinase in spinal microglia in the rat spared nerve injury model,” Anesthesiology, vol. 107, no. 2, pp. 312–321, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. W. Xie, J. A. Strong, and J. M. Zhang, “Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models,” Neuroscience, vol. 160, no. 4, pp. 847–857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. J. M. Neal, C. M. Bernards, A. Hadzic et al., “ASRA practice advisory on neurologic complications in regional anesthesia and pain medicine,” Regional Anesthesia and Pain Medicine, vol. 33, no. 5, pp. 404–415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. M. R. Suter, T. Berta, Y. J. Gao, I. Decosterd, and R. R. Ji, “Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury,” Molecular Pain, vol. 5, p. 53, 2009. View at Google Scholar
  81. L. Liang, Z. Wang, N. Lü, J. Yang, Y. Zhang, and Z. Zhao, “Involvement of nerve injury and activation of peripheral glial cells in tetanic sciatic stimulation-induced persistent pain in rats,” Journal of Neuroscience Research, vol. 88, no. 13, pp. 2899–2910, 2010. View at Publisher · View at Google Scholar
  82. C. S. Houck, A. Khodorova, A. M. Reale, G. R. Strichartz, and G. Davar, “Sensory fibers resistant to the actions of tetrodotoxin mediate nocifensive responses to local administration of endothelin-1 in rats,” Pain, vol. 110, no. 3, pp. 719–726, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Curatolo, S. Petersen-Felix, L. Arendt-Nielsen, M. Fischer, and A. M. Zbinden, “Temporal summation during extradural anaesthesia,” British Journal of Anaesthesia, vol. 75, no. 5, pp. 634–635, 1995. View at Google Scholar · View at Scopus
  84. M. Curatolo, S. Petersen-Felix, L. Arendt-Nielsen, and A. M. Zbinden, “Spinal anaesthesia inhibits central temporal summation,” British Journal of Anaesthesia, vol. 78, no. 1, pp. 88–89, 1997. View at Google Scholar · View at Scopus
  85. H. Beloeil, R. R. Ji, and C. B. Berde, “Effects of bupivacaine and tetrodotoxin on carrageenan-induced hind paw inflammation in rats (part 2): cytokines and p38 mitogen-activated protein kinases in dorsal root ganglia and spinal cord,” Anesthesiology, vol. 105, no. 1, pp. 139–145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. W. Koppert, S. Zeck, R. Sittl, R. Likar, R. Knoll, and M. Schmelz, “Low-dose lidocaine suppresses experimentally induced hyperalgesia in humans,” Anesthesiology, vol. 89, no. 6, pp. 1345–1353, 1998. View at Publisher · View at Google Scholar · View at Scopus
  87. M. De Kock, P. Lavand'homme, and H. Waterloos, “'Balanced analgesia' in the perioperative period: is there a place for ketamine?” Pain, vol. 92, no. 3, pp. 373–380, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. M. De Kock, P. Lavand'homme, and H. Waterloos, “The short-lasting analgesia and long-term antihyperalgesic effect of intrathecal clonidine in patients undergoing colonic surgery,” Anesthesia and Analgesia, vol. 101, no. 2, pp. 566–572, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Lavand'homme, M. De Kock, and H. Waterloos, “Intraoperative epidural analgesia combined with ketamine provides effective preventive analgesia in patients undergoing major digestive surgery,” Anesthesiology, vol. 103, no. 4, pp. 813–820, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. R. W. Colburn and J. A. DeLeo, “The effect of perineural colchicine on nerve injury-induced spinal glial activation and neuropathic pain behavior,” Brain Research Bulletin, vol. 49, no. 6, pp. 419–427, 1999. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Deruddre, E. Combettes, J. P. Estebe et al., “Effects of a bupivacaine nerve block on the axonal transport of Tumor Necrosis Factor-alpha (TNF-α) in a rat model of carrageenan-induced inflammation,” Brain, Behavior, and Immunity, vol. 24, no. 4, pp. 652–659, 2010. View at Publisher · View at Google Scholar · View at Scopus