Table of Contents Author Guidelines Submit a Manuscript
AIDS Research and Treatment
Volume 2011 (2011), Article ID 354908, 11 pages
http://dx.doi.org/10.1155/2011/354908
Review Article

Tenofovir Nephrotoxicity: 2011 Update

1Nefrología, IIS-Fundacion Jimenez Diaz, Fundacion Renal Iñigo Alvarez de Toledo/Instituto Reina Sofia de Investigacion Nefrologica (FRIAT/IRSIN), Universidad Autonoma de Madrid, Madrid, Spain
2Medicina Interna, IIS-Fundacion Jimenez Diaz, Madrid, Spain
3Nefrología, IDiPaz, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo/Instituto Reina Sofia de Investigacion Nefrologica (FRIAT/IRSIN), Madrid, Spain
4Unidad de Diálisis, Fundación Jiménez Díaz, Avenida Reyes Católicos 2, 28040 Madrid, Spain

Received 31 January 2011; Accepted 4 April 2011

Academic Editor: Robert R. Redfield

Copyright © 2011 Beatriz Fernandez-Fernandez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Gallant and S. Deresinski, “Tenofovir disoproxil fumarate,” Clinical Infectious Diseases, vol. 37, no. 7, pp. 944–950, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Y. Hostetler, “Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: current state of the art,” Antiviral Research, vol. 82, no. 2, pp. A84–A98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Birkus, M. J. M. Hitchcock, and T. Cihlar, “Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 3, pp. 716–723, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. E. A. Belongia, J. Costa, and I. F. Gareen, “NIH consensus development statement on management of hepatitis B,” NIH Consens State Sci Statements, vol. 25, pp. 1–29, 2008. View at Google Scholar
  5. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents, 2011, http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf.
  6. S. Rodriguez-Nvoa, E. Alvarez, P. Labarga, and V. Soriano, “Renal toxicity associated with tenofovir use,” Expert Opinion on Drug Safety, vol. 9, no. 4, pp. 545–559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. R. Nelson, C. Katlama, J. S. Montaner et al., “The safety of tenofovir disoproxil fumarate for the treatment of HIV infection in adults: the first 4 years,” AIDS, vol. 21, no. 10, pp. 1273–1281, 2007. View at Publisher · View at Google Scholar
  8. M. Goicoechea, S. Liu, B. Best et al., “Greater tenofovir-associated renal function decline with protease inhibitor-based versus nonnucleoside reverse-transcriptase inhibitor-based therapy,” Journal of Infectious Diseases, vol. 197, no. 1, pp. 102–108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Cihlar, E. S. Ho, D. C. Lin, and A. S. Mulato, “Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs,” Nucleosides, Nucleotides and Nucleic Acids, vol. 20, no. 4–7, pp. 641–648, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. Ray, T. Cihlar, K. L. Robinson et al., “Mechanism of active renal tubular efflux of tenofovir,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 10, pp. 3297–3304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. E. Gallant, M. A. Parish, J. C. Keruly, and R. D. Moore, “Changes in renal function associated with tenofovir disoproxil fumarate treatment, compared with nucleoside reverse-transcriptase inhibitor treatment,” Clinical Infectious Diseases, vol. 40, no. 8, pp. 1194–1198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. E. Gallant, S. Staszewski, A. L. Pozniak et al., “Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial,” Journal of the American Medical Association, vol. 292, no. 2, pp. 191–201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Karras, M. Lafaurie, A. Furco et al., “Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus,” Clinical Infectious Diseases, vol. 36, no. 8, pp. 1070–1073, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. C. W. James, M. C. Steinhaus, S. Szabo, and R. M. Dressler, “Tenofovir-Related nephrotoxicity: case report and review of the literature,” Pharmacotherapy, vol. 24, no. 3, pp. 415–418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Malik, P. Abraham, and N. Malik, “Acute renal failure and fanconi syndrome in an AIDS patient on tenofovir treatment—case report and review of literature,” Journal of Infection, vol. 51, no. 2, pp. e61–e65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Young, K. Buchacz, A. Moorman, K. C. Wood, and J. T. Brooks, “Renal function in patients with preexisting renal disease receiving tenofovir-containing highly active antiretroviral therapy in the HIV outpatient study,” AIDS Patient Care and STDS, vol. 23, no. 8, pp. 589–592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Izzedine, A. Baumelou, and G. Deray, “Acute renal failure in HIV patients,” Nephrology Dialysis Transplantation, vol. 22, no. 10, pp. 2757–2762, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. L. Martin, C. E. Brown, N. Matthews-Davis, and J. E. Reardon, “Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis,” Antimicrobial Agents and Chemotherapy, vol. 38, no. 12, pp. 2743–2749, 1994. View at Google Scholar · View at Scopus
  19. A. Gayet-Ageron, J. Ananworanich, T. Jupimai et al., “No change in calculated creatinine clearance after tenofovir initiation among Thai patients,” Journal of Antimicrobial Chemotherapy, vol. 59, no. 5, pp. 1034–1037, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Izzedine, C. Isnard-Bagnis, J. S. Hulot et al., “Renal safety of tenofovir in HIV treatment-experienced patients,” AIDS, vol. 18, no. 7, pp. 1074–1076, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. L. Pozniak, J. E. Gallant, E. DeJesus et al., “Tenofovir disoproxil fumarate, emtricitabine, and efavirenz versus fixed-dose zidovudine/lamivudine and efavirenz in antiretroviral-naive patients: virologic, immunologic, and morphologic changes—a 96-week analysis,” Journal of Acquired Immune Deficiency Syndromes, vol. 43, no. 5, pp. 535–540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. R. D. Cooper, N. Wiebe, N. Smith, P. Keiser, S. Naicker, and M. Tonelli, “Systematic review and meta-analysis: renal safety of tenofovir disoproxil fumarate in HIV-infected patients,” Clinical Infectious Diseases, vol. 51, pp. 496–505, 2010. View at Publisher · View at Google Scholar
  23. L. C. Herlitz, S. Mohan, M. B. Stokes, J. Radhakrishnan, V. D. D'Agati, and G. S. Markowitz, “Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities,” Kidney International, vol. 78, no. 11, pp. 1171–1177, 2010. View at Publisher · View at Google Scholar
  24. D. Lebrecht, A. C. Venhoff, J. Kirschner, T. Wiech, N. Venhoff, and U. A. Walker, “Mitochondrial tubulopathy in tenofovir disoproxil fumarate-treated rats,” Journal of Acquired Immune Deficiency Syndromes, vol. 51, no. 3, pp. 258–263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. B. Libório, L. Andrade, L. V. B. Pereira, T. R. C. Sanches, M. H. Shimizu, and A. C. Seguro, “Rosiglitazone reverses tenofovir-induced nephrotoxicity,” Kidney International, vol. 74, no. 7, pp. 910–918, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Cihlar, G. LaFlamme, R. Fisher et al., “Novel nucleotide human immunodeficiency virus reverse transcriptase inhibitor GS-9148 with a low nephrotoxic potential: characterization of renal transport and accumulation,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 1, pp. 150–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. J. Kohler, S. H. Hosseini, A. Hoying-Brandt et al., “Tenofovir renal toxicity targets mitochondria of renal proximal tubules,” Laboratory Investigation, vol. 89, no. 5, pp. 513–519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. D. M. Fine, M. A. Perazella, G. M. Lucas, and M. G. Atta, “Renal disease in patients with HIV infection: epidemiology, pathogenesis and management,” Drugs, vol. 68, no. 7, pp. 963–980, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Izzedine, M. Harris, and M. A. Perazella, “The nephrotoxic effects of HAART,” Nature Reviews Nephrology, vol. 5, no. 10, pp. 563–573, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Izzedine, V. Thibault, M. A. Valantin, G. Peytavin, L. Schneider, and Y. Benhamou, “Tenofovir/probenecid combination in HIV/HBV-coinfected patients: how to escape fanconi syndrome recurrence?” AIDS, vol. 24, no. 7, pp. 1078–1079, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. P. Lalezari, R. J. Stagg, B. D. Kuppermann et al., “Intravenous cidofovir for peripheral cytomegalovirus retinitis in patients with AIDS: a randomized, controlled trial,” Annals of Internal Medicine, vol. 126, no. 4, pp. 257–263, 1997. View at Google Scholar · View at Scopus
  32. J. M. Irizarry-Alvarado, J. P. Dwyer, L. M. Brumble, S. Alvarez, and J. C. Mendez, “Proximal tlibular dysfunction associated with tenofovir and didanosine causing fanconl syndrome and diabetes insipidus: a report of 3 cases,” AIDS Reader, vol. 19, no. 3, pp. 114–121, 2009. View at Google Scholar · View at Scopus
  33. H. Peyrière, J. Reynes, I. Rouanet et al., “Renal tubular dysfunction associated with tenofovir therapy: report of 7 cases,” Journal of Acquired Immune Deficiency Syndromes, vol. 35, no. 3, pp. 269–273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. E. Zimmermann, T. Pizzoferrato, J. Bedford, A. Morris, R. Hoffman, and G. Braden, “Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions,” Clinical Infectious Diseases, vol. 42, no. 2, pp. 283–290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. K. Gupta, “Tenofovir-associated fanconi syndrome: review of the FDA adverse event reporting system,” AIDS Patient Care and STDs, vol. 22, no. 2, pp. 99–103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Papaleo, J. Warszawski, R. Salomon et al., “Increased β-2 microglobulinuria in human immunodeficiency virus-1-infected children and adolescents treated with tenofovir,” Pediatric Infectious Disease Journal, vol. 26, no. 10, pp. 949–951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Gatanaga, N. Tachikawa, Y. Kikuchi et al., “Urinary β2-microglobulin as a possible sensitive marker for renal injury caused by tenofovir disoproxil fumarate,” AIDS Research and Human Retroviruses, vol. 22, no. 8, pp. 744–748, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Perrot, E. Aslangul, T. Szwebel, N. Caillat-Vigneron, and C. Le Jeunne, “Bone pain due to fractures revealing osteomalacia related to tenofovir-induced proximal renal tubular dysfunction in a human immunodeficiency virus-infected patient,” Journal of Clinical Rheumatology, vol. 15, no. 2, pp. 72–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. J. Parsonage, E. G. L. Wilkins, N. Snowden, B. G. Issa, and M. W. Savage, “The development of hypophosphataemic osteomalacia with myopathy in two patients with HIV infection receiving tenofovir therapy,” HIV Medicine, vol. 6, no. 5, pp. 341–346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. K. K. A. Van Rompay, L. L. Brignolo, D. J. Meyer et al., “Biological effects of short-term or prolonged administration of 9-[2-(Phosphonomethoxy)Propyl]Adenine (Tenofovir) to newborn and infant rhesus macaques,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 5, pp. 1469–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. A. B. Castillo, A. F. Tarantal, M. R. Watnik, and R. Bruce Martin, “Tenofovir treatment at 30 mg/kg/day can inhibit cortical bone mineralization in growing rhesus monkeys (Macaca mulatta),” Journal of Orthopaedic Research, vol. 20, no. 6, pp. 1185–1189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. FDA., “Tenofovir disoproxil fumarate,” in Metting PotFADPAC, US Food and Drug Administration, 2001. View at Google Scholar
  43. R. T. Schooley, P. Ruane, R. A. Myers et al., “Tenofovir DF in antiretroviral-experienced patients: results from a 48-week, randomized, double-blind study,” AIDS, vol. 16, no. 9, pp. 1257–1263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Ortiz, P. Justo, A. Sanz et al., “Tubular cell apoptosis and cidofovir-induced acute renal failure,” Antiviral Therapy, vol. 10, no. 1, pp. 185–190, 2005. View at Google Scholar · View at Scopus
  45. J. R. Arribas, A. L. Pozniak, J. E. Gallant et al., “Tenofovir disoproxil fumarate, emtricitabine, and efavirenz compared with zidovudine/lamivudine and efavirenz in treatment-naive patients: 144-Week analysis,” Journal of Acquired Immune Deficiency Syndromes, vol. 47, no. 1, pp. 74–78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Winston, J. Amin, P. W. G. Mallon et al., “Minor changes in calculated creatinine clearance and anion-gap are associated with tenofovir disoproxil fumarate-containing highly active antiretroviral therapy,” HIV Medicine, vol. 7, no. 2, pp. 105–111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Barditch-Crovo, S. G. Deeks, A. Collier et al., “Phase I/II trial of the pharmacokinetics, safety, and antiretroviral activity of tenofovir disoproxil fumarate in human immunodeficiency virus-infected adults,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 10, pp. 2733–2739, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Kinai and H. Hanabusa, “Progressive renal tubular dysfunction associated with long-term use of tenofovir DF,” AIDS Research and Human Retroviruses, vol. 25, no. 4, pp. 387–394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. A. D. Rule, “Understanding estimated glomerular filtration rate: implications for identifying chronic kidney disease,” Current Opinion in Nephrology and Hypertension, vol. 16, no. 3, pp. 242–249, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. P. E. Sax, J. E. Gallant, and P. E. Klotman, “Renal safety of tenofovir disoproxil fumarate,” AIDS Reader, vol. 17, no. 2, pp. 99–104, 2007. View at Google Scholar · View at Scopus
  51. A. Ortiz, J. P. Oliveira, C. Wanner, B. M. Brenner, S. Waldek, and D. G. Warnock, “Recommendations and guidelines for the diagnosis and treatment of fabry nephropathy in adults,” Nature Clinical Practice Nephrology, vol. 4, no. 6, pp. 327–336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Bhaskaran, O. Hamouda, M. Sannes et al., “Changes in the risk of death after HIV seroconversion compared with mortality in the general population,” Journal of the American Medical Association, vol. 300, no. 1, pp. 51–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. A. S. Go, G. M. Chertow, D. Fan, C. E. McCulloch, and C. Y. Hsu, “Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization,” New England Journal of Medicine, vol. 351, no. 13, pp. 1296–1370, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Rojas-Rivera, C. De La Piedra, A. Ramos, A. Ortiz, and J. Egido, “The expanding spectrum of biological actions of vitamin D,” Nephrology Dialysis Transplantation, vol. 25, no. 9, pp. 2850–2865, 2010. View at Publisher · View at Google Scholar
  55. P. Labarga, P. Barreiro, L. Martin-Carbonero et al., “Kidney tubular abnormalities in the absence of impaired glomerular function in HIV patients treated with tenofovir,” AIDS, vol. 23, no. 6, pp. 689–696, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Rodríguez-Nóvoa, P. Labarga, V. Soriano et al., “Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a harmacogenetic study,” Clinical Infectious Diseases, vol. 48, no. 11, pp. e108–e116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Buchacz, B. Young, R. K. Baker et al., “Renal function in patients receiving tenofovir with ritonavir/lopinavir or ritonavir/atazanavir in the HIV Outpatient Study (HOPS) cohort,” Journal of Acquired Immune Deficiency Syndromes, vol. 43, no. 5, pp. 626–628, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Badiou, C. Merle De Boever, N. Terrier, V. Baillat, J. P. Cristol, and J. Reynes, “Is tenofovir involved in hypophosphatemia and decrease of tubular phosphate reabsorption in HIV-positive adults?” Journal of Infection, vol. 52, no. 5, pp. 335–338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Jones, J. Stebbing, M. Nelson et al., “Renal dysfunction with tenofovir disoproxil fumarate-containing highly active antiretroviral therapy regimens is not observed more frequently: a cohort and case-control study,” Journal of Acquired Immune Deficiency Syndromes, vol. 37, no. 4, pp. 1489–1495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Zoulim, S. Radenne, and C. Ducerf, “Management of patients with decompensated hepatitis B virus association cirrhosis,” Liver Transplantation, vol. 14 Suppl 2, pp. S1–7, 2008. View at Google Scholar
  61. P. Bonfanti, G. V. De Socio, S. Carradori et al., “Tenofovir renal safety in HIV-infected patients: results from the SCOLTA project,” Biomedicine and Pharmacotherapy, vol. 62, no. 1, pp. 6–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. R. L. Mehta, J. A. Kellum, S. V. Shah et al., “Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury,” Critical Care, vol. 11, no. 2, article R31, 2007. View at Google Scholar
  63. J. W. Sons, Ed., Mitochondrial Dysfunction in Drug-Induced Toxicity, John Wiley & Sons, Hoboken, NJ, USA, 2008.
  64. N. Tanji, K. Tanji, N. Kambham, G. S. Markowitz, A. Bell, and V. D. D'Agati, “Adefovir nephrotoxicity: possible role of mitochondrial DNA depletion,” Human Pathology, vol. 32, no. 7, pp. 734–740, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. E. J. Fisher, K. Chaloner, D. L. Cohn et al., “The safety and efficacy of adefovir dipivoxil in patients with advanced HIV disease: a randomized, placebo-controlled trial,” AIDS, vol. 15, no. 13, pp. 1695–1700, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. M. A. Perazella, “Tenofovir-induced kidney disease: an acquired renal tubular mitochondriopathy,” Kidney International, vol. 78, no. 11, pp. 1060–1063, 2010. View at Publisher · View at Google Scholar
  67. W. Lewis, B. J. Day, and W. C. Copeland, “Mitochondrial toxicity of NRTI antiviral drugs: An integrated cellular perspective,” Nature Reviews Drug Discovery, vol. 2, no. 10, pp. 812–822, 2003. View at Google Scholar · View at Scopus
  68. J. D. Stumpf and W. C. Copeland, “Mitochondrial DNA replication and disease: insights from DNA polymeraseγ mutations,” Cellular and Molecular Life Sciences, vol. 68, no. 2, pp. 219–233, 2011. View at Publisher · View at Google Scholar
  69. T. N. Kakuda, “Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity,” Clinical Therapeutics, vol. 22, no. 6, pp. 685–708, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Moyle, “Mechanisms of HIV and nucleoside reverse transcriptase inhibitor injury to mitochondria,” Antiviral Therapy, vol. 10, no. 2, pp. M47–M52, 2005. View at Google Scholar · View at Scopus
  71. J. K. Min, C. Jardel, C. Barthélémy et al., “Mitochondrial DNA content, an inaccurate biomarker of mitochondrial alteration in human immunodeficiency virus-related lipodystrophy,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 5, pp. 1670–1676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. R. Ferraresi, L. Troiano, M. Pinti et al., “Resistance of mtDNA-depleted cells to apoptosis,” Cytometry Part A, vol. 73, no. 6, pp. 528–537, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. C. C. Kujoth, A. Hiona, T. D. Pugh et al., “Medicine: mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging,” Science, vol. 309, no. 5733, pp. 481–484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. H. Lee, J. Hanes, and K. A. Johnson, “Toxicity of nucleoside analogues used to treat AIDS and the selectivity of the mitochondrial DNA polymerase,” Biochemistry, vol. 42, no. 50, pp. 14711–14719, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. H. C. F. Côté, A. B. Magil, M. Harris et al., “Exploring mitochondrial nephrotoxicity as a potential mechanism of kidney dysfunction among HIV-infected patients on highly active antiretroviral therapy,” Antiviral Therapy, vol. 11, no. 1, pp. 79–86, 2006. View at Google Scholar · View at Scopus
  76. A. B. Sanz, B. Santamaría, M. Ruiz-Ortega, J. Egido, and A. Ortiz, “Mechanisms of renal apoptosis in health and disease,” Journal of the American Society of Nephrology, vol. 19, no. 9, pp. 1634–1642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Coca and M. A. Perazella, “Rapid communication: a cute renal failure associated with tenofovir: evidence of drug-induced nephrotoxicity,” American Journal of the Medical Sciences, vol. 324, no. 6, pp. 342–344, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Rodríguez-Nóvoa, P. Labarga, A. D'Avolio et al., “Impairment in kidney tubular function in patients receiving tenofovir is associated with higher tenofovir plasma concentrations,” AIDS, vol. 24, no. 7, pp. 1064–1066, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. S. K. Gupta, J. A. Eustace, J. A. Winston et al., “Guidelines for the management of chronic kidney disease in HIV-infected patients: recommendations of the HIV medicine association of the infectious diseases society of america,” Clinical Infectious Diseases, vol. 40, no. 11, pp. 1559–1585, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. European AIDS Clinical Society. Prevention and Management of Non-Infectious Co-Morbidities in HIV, 2009, http://www.europeanaidsclinicalsociety.org/guidelinespdf/2_Non_Infectious_Co_Morbidities_in_HIV.pdf.
  81. F. J. De La Prada Álvarez, A. M. Prados, A. Tugores, M. Uriol, C. Saus, and A. Morey, “Acute renal failure and proximal renal tubular dysfuntion in a patient with acquired immunodeficiency syndrome treated with tenofovir,” Nefrologia, vol. 26, no. 5, pp. 626–630, 2006. View at Google Scholar · View at Scopus
  82. E. Blind, K. Dunder, P. A. De Graeff, and E. Abadie, “Rosiglitazone: a European regulatory perspective,” Diabetologia, vol. 54, no. 2, pp. 213–218, 2011. View at Publisher · View at Google Scholar
  83. E. R. Lanier, R. G. Ptak, B. M. Lampert et al., “Development of hexadecyloxypropyl tenofovir (CMX157) for treatment of infection caused by wild-type and nucleoside/nucleotide-resistant HIV,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 7, pp. 2901–2909, 2010. View at Publisher · View at Google Scholar · View at Scopus