Table of Contents Author Guidelines Submit a Manuscript
AIDS Research and Treatment
Volume 2011, Article ID 463704, 11 pages
http://dx.doi.org/10.1155/2011/463704
Review Article

Antiretroviral Therapy for HIV-2 Infection: Recommendations for Management in Low-Resource Settings

1Medical Research Council (UK) Laboratories, Atlantic Road, P.O. Box 273, Fajara, Gambia
2Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
3MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, UK

Received 27 May 2010; Accepted 12 December 2010

Academic Editor: Ann Duerr

Copyright © 2011 Kevin Peterson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Damond, M. Worobey, P. Campa et al., “Identification of a highly divergent HIV type 2 and proposal for a change in HIV type 2 classification,” AIDS Research and Human Retroviruses, vol. 20, no. 6, pp. 666–672, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Jaffar, A. D. Grant, J. Whitworth, P. G. Smith, and H. Whittle, “The natural history of HIV-1 and HIV-2 infections in adults in Africa: a literature review,” Bulletin of the World Health Organization, vol. 82, no. 6, pp. 462–469, 2004. View at Google Scholar · View at Scopus
  3. A. G. Poulsen, P. Aaby, O. Larsen et al., “9-year HIV-2-associated mortality in an urban community in Bissau, West Africa,” Lancet, vol. 349, no. 9056, pp. 911–914, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Whittle, J. Morris, J. Todd et al., “HIV-2-infected patients survive longer than HlV-1-infected patients,” AIDS, vol. 8, no. 11, pp. 1617–1620, 1994. View at Google Scholar · View at Scopus
  5. E. Martinez-Steele, A. A. Awasana, T. Corrah et al., “Is HIV-2- induced AIDS different from HIV-1-associated AIDS? Data from a West African clinic,” AIDS, vol. 21, no. 3, pp. 317–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. F. Schim van der Loeff and P. Aaby, “Towards a better understanding of the epidemiology of HIV-2,” AIDS, vol. 13, supplement, pp. S69–S84, 1999. View at Google Scholar · View at Scopus
  7. Y. Isaka, S. Miki, S. Kawauchi et al., “A single amino acid change at Leu-188 in the reverse transcriptase of HIV-2 and SIV renders them sensitive to non-nucleoside reverse transcriptase inhibitors,” Archives of Virology, vol. 146, no. 4, pp. 743–755, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Witvrouw, C. Pannecouque, W. M. Switzer, T. M. Folks, E. De Clercq, and W. Heneine, “Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: implications for treatment and postexposure prophylaxis,” Antiviral Therapy, vol. 9, no. 1, pp. 57–65, 2004. View at Google Scholar · View at Scopus
  9. http://data.unaids.org/Publications/External-DocumentsRestored/whoepicountryprofilesafrica2002_en.pdf.
  10. A. G. Poulsen, P. Aaby, A. Gottschau et al., “HIV-2 infection in Bissau, West Africa, 1987–1989: incidence, prevalences, and routes of transmission,” Journal of Acquired Immune Deficiency Syndromes, vol. 6, no. 8, pp. 941–948, 1993. View at Google Scholar · View at Scopus
  11. Z. J. Da Silva, I. Liveira, A. Andersen et al., “Changes in prevalence and incidence of HIV-1, HIV-2 and dual infections in urban areas of Bissau, Guinea-Bissau: is HIV-2 disappearing?” AIDS, vol. 22, no. 10, pp. 1195–1202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Van Tienen, M. F. Van Der Loeff, S. M.A. Zaman et al., “Two distinct epidemics: the rise of HIV-1 and decline of HIV-2 infection between 1990 and 2007 in rural guinea-bissau,” Journal of Acquired Immune Deficiency Syndromes, vol. 53, no. 5, pp. 640–647, 2010. View at Publisher · View at Google Scholar
  13. A. Wilkins, D. Ricard, J. Todd, H. Whittle, F. Dias, and A. P. Da Silva, “The epidemiology of HIV infection in a rural area of Guinea-Bissau,” AIDS, vol. 7, no. 8, pp. 1119–1122, 1993. View at Google Scholar · View at Scopus
  14. U. Dietrich, J. K. Maniar, and H. Rubsamen-Waigmann, “The epidemiology of HIV in India,” Trends in Microbiology, vol. 3, no. 1, pp. 17–21, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Smallman-Raynor and A. Cliff, “The spread of human immunodeficiency virus type 2 into Europe: a geographical analysis,” International Journal of Epidemiology, vol. 20, no. 2, pp. 480–489, 1991. View at Google Scholar · View at Scopus
  16. M. O. Santos-Ferreira, T. Cohen, M. H. Lourenco, M. J. Matos Almeida, S. Chamaret, and L. Montagnier, “A study of seroprevalence of HIV-1 and HIV-2 in six provinces of People's Republic of Angola: clues to the spread of HIV infection,” Journal of Acquired Immune Deficiency Syndromes, vol. 3, no. 8, pp. 780–786, 1990. View at Google Scholar · View at Scopus
  17. J. Barreto, J. Liljestrand, C. Palha de Sousa et al., “HIV-1 and HIV-2 antibodies in pregnant women in the city of Maputo, Mozambique: a comparative study between 1982/1983 and 1990,” Scandinavian Journal of Infectious Diseases, vol. 25, no. 6, pp. 685–688, 1993. View at Google Scholar · View at Scopus
  18. E. Cortes, R. Detels, D. Aboulafia et al., “HIV-1, HIV-2, and HTLV-I infection in high-risk groups in Brazil,” New England Journal of Medicine, vol. 320, no. 15, pp. 953–958, 1989. View at Google Scholar · View at Scopus
  19. J. Balzarini, “Current status of the non-nucleoside reverse transcriptase inhibitors of human immunodeficiency virus type 1,” Current Topics in Medicinal Chemistry, vol. 4, no. 9, pp. 921–944, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. V. A. Johnson, F. Brun-Vezinet, B. Clotet et al., “Update of the drug resistance mutations in HIV-1: December 2009,” Topics in HIV Medicine, vol. 17, no. 5, pp. 138–145, 2009. View at Google Scholar · View at Scopus
  21. HIVdb: Genotypic Resistance Interpretation Algorithm, “Stanford University: HIV Drug Resistance Database,” http://sierra2.stanford.edu/sierra/servlet/JSierra.
  22. L. Giuseppe, A. Soria, and A. Gori, “Pharmacotherapy of HIV: focus on etravirine,” Clinical Medicine, vol. 1, pp. 483–494, 2009. View at Google Scholar
  23. L. Siegel and R. M. Gulick, “New antiretroviral agents,” Current Infectious Disease Reports, vol. 9, no. 3, pp. 243–251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Reid, H. MacInnes, M. E. Cong, W. Heneine, and J. G. García-Lerma, “Natural resistance of human immunodeficiency virus type 2 to zidovudine,” Virology, vol. 336, no. 2, pp. 251–264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. R. A. Smith, G. S. Gottlieb, D. J. Anderson, C. L. Pyrak, and B. D. Preston, “Human immunodeficiency virus types 1 and 2 exhibit comparable sensitivities to zidovudine and other nucleoside analog inhibitors in vitro,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 1, pp. 329–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. L. Ntemgwa, T. D. Toni, B. G. Brenner et al., “Nucleoside and nucleotide analogs select in culture for different patterns of drug resistance in human immunodeficiency virus types 1 and 2,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 2, pp. 708–715, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Jallow, S. Kaye, A. Alabi et al., “Virological and immunological response to Combivir and emergence of drug resistance mutations in a cohort of HIV-2 patients in The Gambia,” AIDS, vol. 20, no. 10, pp. 1455–1458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. E. Van Der Ende, J. M. Prins, K. Brinkman et al., “Clinical, immunological and virological response to different antiretroviral regimens in a cohort of HIV-2-infected patients,” AIDS, vol. 17, no. 3, pp. S55–S61, 2003. View at Google Scholar · View at Scopus
  29. C. A. Adjé-Touré, R. Cheingsong, J. G. Garcìa-Lerma et al., “Antiretroviral therapy in HIV-2-infected patients: changes in plasma viral load, CD4+ cell counts, and drug resistance profiles of patients treated in Abidjan, Côte d'Ivoire,” AIDS, vol. 17, supplement 3, pp. S49–S54, 2003. View at Google Scholar · View at Scopus
  30. R. A. Smith, D. J. Anderson, C. L. Pyrak, B. D. Preston, and G. S. Gottlieb, “Antiretroviral drug resistance in HIV-2: three amino acid changes are sufficient for classwide nucleoside analogue resistance,” Journal of Infectious Diseases, vol. 199, no. 9, pp. 1323–1326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. R. Kuritzkes, R. L. Bassett, J. D. Hazelwood et al., “Rate of thymidine analogue resistance mutation accumulation with zidovudine- or stavudine-based regimens,” Journal of Acquired Immune Deficiency Syndromes, vol. 36, no. 1, pp. 600–603, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Rodés, A. Holguín, V. Soriano et al., “Emergence of drug resistance mutations in human immunodeficiency virus type 2-infected subjects undergoing antiretroviral therapy,” Journal of Clinical Microbiology, vol. 38, no. 4, pp. 1370–1374, 2000. View at Google Scholar · View at Scopus
  33. E. Brandin, L. Lindborg, K. Gyllensten et al., “pol gene sequence variation in Swedish HIV-2 patients failing antiretroviral therapy,” AIDS Research and Human Retroviruses, vol. 19, no. 7, pp. 543–550, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Jallow, A. Alabi, R. Sarge-Njie et al., “Virological response to highly active antiretroviral therapy in patients infected with human immunodeficiency virus type 2 (HIV-2) and in patients dually infected with HIV-1 and HIV-2 in the gambia and emergence of drug-resistant variants,” Journal of Clinical Microbiology, vol. 47, no. 7, pp. 2200–2208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. G. S. Gottlieb, N. M. D. Badiane, S. E. Hawes et al., “Emergence of multiclass drug-resistance in HIV-2 in antiretroviral-treated individuals in Senegal: implications for HIV-2 treatment in resouce-limited West Africa,” Clinical Infectious Diseases, vol. 48, no. 4, pp. 476–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Colson, M. Henry, N. Tivoli et al., “Polymorphism and drug-selected mutations in the reverse transcriptase gene of HIV-2 from patients living in Southeastern France,” Journal of Medical Virology, vol. 75, no. 3, pp. 381–390, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. J. N. Nkengasong, C. Adje-Toure, and P. J. Weidle, “HIV antiretroviral drug resistance in Africa,” AIDS Reviews, vol. 6, no. 1, pp. 4–12, 2004. View at Google Scholar · View at Scopus
  38. G. J. Moyle, “The K65R mutation: selection, frequency, and possible consequences,” AIDS Reader, vol. 14, no. 11, pp. 595–601, 2004. View at Google Scholar · View at Scopus
  39. F. Damond, S. Matheron, G. Peytavin et al., “Selection of K65R mutation in HIV-2-infected patients receiving tenofovir-containing regimen,” Antiviral Therapy, vol. 9, no. 4, pp. 635–636, 2004. View at Google Scholar · View at Scopus
  40. D. Descamps, F. Damond, S. Matheron et al., “High frequency of selection of K65R and Q151M mutations in HIV-2 infected patients receiving nucleoside reverse transcriptase inhibitors containing regimen,” Journal of Medical Virology, vol. 74, no. 2, pp. 197–201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. M. L. Ntemgwa, T. D. Toni, B. G. Brenner, R. J. Camacho, and M. A. Wainberg, “Antiretroviral drug resistance in human immunodeficiency virus type 2,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 9, pp. 3611–3619, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Tong, S. Pav, C. Pargellis, F. Do, D. Lamarre, and P. C. Anderson, “Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 18, pp. 8387–8391, 1993. View at Google Scholar · View at Scopus
  43. F. Damond, F. Brun-Vezinet, S. Matheron et al., “Polymorphism of the human immunodeficiency virus type 2 (HIV-2) protease gene and selection of drug resistance mutations in HIV-2-infected patients treated with protease inhibitors,” Journal of Clinical Microbiology, vol. 43, no. 1, pp. 484–487, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Hightower and E. G. Kallas, “Diagnosis, antiretroviral therapy, and emergence of resistance to antiretroviral agents in HIV-2 infection: a review,” The Brazilian Journal of Infectious Diseases, vol. 7, no. 1, pp. 7–15, 2003. View at Google Scholar · View at Scopus
  45. P. Colson, M. Henry, C. Tourres et al., “Polymorphism and drug-selected mutations in the protease gene of human immunodeficiency virus type 2 from patients living in Southern France,” Journal of Clinical Microbiology, vol. 42, no. 2, pp. 570–577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Ntemgwa, B. G. Brenner, M. Oliveira, D. Moisi, and M. A. Wainberg, “Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 2, pp. 604–610, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Pichova, J. Weber, J. Litera et al., “Peptide inhibitors of HIV-1 and HIV-2 proteases: a comparative study,” Leukemia, vol. 11, supplement 3, pp. 120–122, 1997. View at Google Scholar
  48. B. Rodés, C. Toro, J. A. Sheldon, V. Jiménez, K. Mansinho, and V. Soriano, “High rate of proV47A selection in HIV-2 patients failing lopinavir-based HAART,” AIDS, vol. 20, no. 1, pp. 127–129, 2006. View at Google Scholar · View at Scopus
  49. J. A. Martin, M. A. Mobberley, S. Redshaw, A. Burke, A. S. Tyms, and T. A. Ryder, “The inhibitory activity of a peptide derivative against the growth of simian immunodeficiency virus in C8166 cells,” Biochemical and Biophysical Research Communications, vol. 176, no. 1, pp. 180–188, 1991. View at Google Scholar · View at Scopus
  50. A. K. Patick, H. Mo, M. Markowitz et al., “Antiviral and resistance studies of AG1343, an orally bioavailable inhibitor of human immunodeficiency virus protease,” Antimicrobial Agents and Chemotherapy, vol. 40, no. 2, pp. 292–297, 1996. View at Google Scholar · View at Scopus
  51. J. P. Vacca, B. D. Dorsey, W. A. Schleif et al., “L-735,524: an orally bioavailable human immunodeficiency virus type 1 protease inhibitor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 9, pp. 4096–4100, 1994. View at Google Scholar · View at Scopus
  52. D. J. Kempf, K. C. Marsh, J. F. Denissen et al., “ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 7, pp. 2484–2488, 1995. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Rodés, J. Sheldon, C. Toro, V. Jiménez, M. A. Álvarez, and V. Soriano, “Susceptibility to protease inhibitors in HIV-2 primary isolates from patients failing antiretroviral therapy,” Journal of Antimicrobial Chemotherapy, vol. 57, no. 4, pp. 709–713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. E. T. Brower, U. M. Bacha, Y. Kawasaki, and E. Freire, “Inhibition of HIV-2 protease by HIV-1 protease inhibitors in clinical use,” Chemical Biology and Drug Design, vol. 71, no. 4, pp. 298–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Desbois, B. Roquebert, G. Peytavin et al., “In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 4, pp. 1545–1548, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. R. A. Smith, S. E. Hawes, M. Toure et al., “Toward optimal antiretroviral therapy for HIV-2: can genotypic and phenotypic drug resistance testing help guide therapy in HIV-2?” in Proceedings of the 17th Conference on Retroviruses and Opportunistic Infections, San Francisco, Calif, USA, 2010, Abstract 597.
  57. D. J. Kempf, J. D. Isaacson, M. S. King et al., “Analysis of the virological response with respect to baseline viral phenotype and genotype in protease inhibitor-experienced HIV-1-infected patients receiving lopinavir/ritonavir therapy,” Antiviral Therapy, vol. 7, no. 3, pp. 165–174, 2002. View at Google Scholar · View at Scopus
  58. H. Mo, M. S. King, K. King, A. Molla, S. Brun, and D. J. Kempf, “Selection of resistance in protease inhibitor-experienced, human immunodeficiency virus type 1-infected subjects failing lopinavir- and ritonavir-based therapy: mutation patterns and baseline correlates,” Journal of Virology, vol. 79, no. 6, pp. 3329–3338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. R. M. Kagan, M. D. Shenderovich, P. N. R. Heseltine, and K. Ramnarayan, “Structural analysis of an HIV-1 protease I47A mutant resistant to the protease inhibitor lopinavir,” Protein Science, vol. 14, no. 7, pp. 1870–1878, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Friend, N. Parkin, T. Liegler, J. N. Martin, and S. G. Deeks, “Isolated lopinavir resistance after virological rebound of a ritonavir/lopinavir-based regimen,” AIDS, vol. 18, no. 14, pp. 1965–1966, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Masse, X. Lu, T. Dekhtyar et al., “In vitro selection and characterization of human immunodeficiency virus type 2 with decreased susceptibility to lopinavir,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 9, pp. 3075–3080, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Ruelle, F. Roman, A. T. Vandenbroucke et al., “Transmitted drug resistance, selection of resistance mutations and moderate antiretroviral efficacy in HIV-2: analysis of the HIV-2 Belgium and Luxembourg database,” BMC Infectious Diseases, vol. 8, article no. 21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. F. S. Sarfo, D. F. Bibby, U. Schwab et al., “Inadvertent non-nucleoside reverse transcriptase inhibitor (NNRTI)-based antiretroviral therapy in dual HIV-1/2 and HIV-2 seropositive West Africans: a retrospective study,” Journal of Antimicrobial Chemotherapy, vol. 64, no. 3, pp. 667–669, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Rodes, C. Toro, R. Colombatti et al., “Selection of the K65R mutation in HIV-2 patients exposed to abacavir,” in Proceedings of the 15th Conference on Retrovirology and Opportunistic Infections, Boston, Mass, USA, 2008, Abstract 885.
  65. A. Bénard, F. Damond, P. Campa et al., “Good response to lopinavir/ritonavir-containing antiretroviral regimens in antiretroviral-naive HIV-2-infected patients,” AIDS, vol. 23, no. 9, pp. 1171–1173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Barreiro and V. Soriano, “Suboptimal CD4 gains in HIV-infected patients receiving didanosine plus tenofovir,” Journal of Antimicrobial Chemotherapy, vol. 57, no. 5, pp. 806–809, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. A. L. Pozniak, J. E. Gallant, E. DeJesus et al., “Tenofovir disoproxil fumarate, emtricitabine, and efavirenz versus fixed-dose zidovudine/lamivudine and efavirenz in antiretroviral-naive patients: virologic, immunologic, and morphologic changes—a 96-week analysis,” Journal of Acquired Immune Deficiency Syndromes, vol. 43, no. 5, pp. 535–540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. J. E. Gallant, E. Dejesus, J. R. Arribas et al., “Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV,” New England Journal of Medicine, vol. 354, no. 3, pp. 251–260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. F. A. Post, G. J. Moyle, H. J. Stellbrink et al., “Randomized comparison of renal effects, efficacy, and safety with once-daily abacavir/lamivudine versus tenofovir/emtricitabine, administered with efavirenz, in antiretroviral-naive, HIV-1-infected adults: 48-week results from the ASSERT study,” Journal of Acquired Immune Deficiency Syndromes, vol. 55, no. 1, pp. 49–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. P. E. Sax, C. Tierney, A. C. Collier et al., “Abacavir-lamivudine versus tenofovir-emtricitabine for initial HIV-1 therapy,” New England Journal of Medicine, vol. 361, no. 23, pp. 2230–2240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Rodriguez-Nvoa, E. Alvarez, P. Labarga, and V. Soriano, “Renal toxicity associated with tenofovir use,” Expert Opinion on Drug Safety, vol. 9, no. 4, pp. 545–559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Orkin, S. T. Sadiq, L. Rice, and F. Jackson, “Prospective epidemiological study of the prevalence of human leukocyte antigen (HLA)-B5701 in HIV-1-infected UK subjects,” HIV Medicine, vol. 11, no. 3, pp. 187–192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. L.-M. Yindom, A. Leligdowicz, M. P. Martin et al., “Influence of HLA class I and HLA-KIR compound genotypes on HIV-2 infection and markers of disease progression in a Manjako community in West Africa,” Journal of Virology, vol. 84, no. 16, pp. 8202–8208, 2010. View at Publisher · View at Google Scholar
  74. Global Price Reporting Mechanism, 2010, http://apps.who.int/hiv/amds/price/hdd/index.aspx.
  75. M. Petrella and M. A. Wainberg, “Might the M184V substitution in HIV-1 RT confer clinical benefit?” AIDS Reviews, vol. 4, no. 4, pp. 224–232, 2002. View at Google Scholar · View at Scopus
  76. J. K. Wakefield, S. A. Jablonski, and C. D. Morrow, “In vitro enzymatic activity of human immunodeficiency virus type 1 reverse transcriptase mutants in the highly conserved YMDD amino acid motif correlates with the infectious potential of the proviral genome,” Journal of Virology, vol. 66, no. 11, pp. 6806–6812, 1992. View at Google Scholar · View at Scopus
  77. A. S. Alabi, S. Jaffar, K. Ariyoshi et al., “Plasma viral load, CD4 cell percentage, HLA and survival of HIV-1, HIV-2, and dually infected Gambian patients,” AIDS, vol. 17, no. 10, pp. 1513–1520, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. B. Rodés, C. Toro, V. Jiménez, and V. Soriano, “Viral response to antiretroviral therapy in a patient coinfected with HIV type 1 and type 2,” Clinical Infectious Diseases, vol. 41, no. 2, pp. e19–e21, 2005. View at Google Scholar · View at Scopus
  79. T. de Silva, C. Van Tienen, S. Rowland-Jones, and M. Cotten, “Dual infection with HIV-1 and HIV-2: double trouble or destructive interference?” HIV Therapy, vol. 4, pp. 305–323, 2010. View at Google Scholar
  80. J. D. Reeves and R. W. Doms, “Human immunodeficiency virus type 2,” Journal of General Virology, vol. 83, no. 6, pp. 1253–1265, 2002. View at Google Scholar · View at Scopus
  81. E. S. Daar, K. L. Kesler, C. J. Petropoulos et al., “Baseline HIV type 1 coreceptor tropism predicts disease progression,” Clinical Infectious Diseases, vol. 45, no. 5, pp. 643–649, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Willey, P. J. Peters, W. M. Sullivan, P. Dorr, M. Perros, and P. R. Clapham, “Inhibition of CCR5-mediated infection by diverse R5 and R5X4 HIV and SIV isolates using novel small molecule inhibitors of CCR5: effects of viral diversity, target cell and receptor density,” Antiviral Research, vol. 68, no. 2, pp. 96–108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Armstrong-James, J. Stebbing, A. Scourfield et al., “Clinical outcome in resistant HIV-2 infection treated with raltegravir and maraviroc,” Antiviral Research, vol. 86, no. 2, pp. 224–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. S. M. Owen, D. Ellenberger, M. Rayfield et al., “Genetically divergent strains of human immunodeficiency virus type 2 use multiple coreceptors for viral entry,” Journal of Virology, vol. 72, no. 7, pp. 5425–5432, 1998. View at Google Scholar · View at Scopus
  85. Y. Shi, E. Brandin, E. Vincic et al., “Evolution of human immunodeficiency virus type 2 coreceptor usage, autologous neutralization, envelope sequence and glycosylation,” Journal of General Virology, vol. 86, no. 12, pp. 3385–3396, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. J. L. Lennox, E. DeJesus, D. S. Berger et al., “Raltegravir versus efavirenz regimens in treatment-naive HIV-1-infected patients: 96-week efficacy, durability, subgroup, safety, and metabolic analyses,” Journal of Acquired Immune Deficiency Syndromes, vol. 55, no. 1, pp. 39–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. R. T. Steigbigel, D. A. Cooper, H. Teppler et al., “Long-term efficacy and safety of raltegravir combined with optimized background therapy in treatmentexperienced patients with drugresistant hiv infection: week 96 results of the benchmrk 1 and 2 phase III trials,” Clinical Infectious Diseases, vol. 50, no. 4, pp. 605–612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. B. Roquebert, F. Damond, G. Collin et al., “HIV-2 integrase gene polymorphism and phenotypic susceptibility of HIV-2 clinical isolates to the integrase inhibitors raltegravir and elvitegravir in vitro,” Journal of Antimicrobial Chemotherapy, vol. 62, no. 5, pp. 914–920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Garrido, A. M. Geretti, N. Zahonero et al., “Integrase variability and susceptibility to HIV integrase inhibitors: impact of subtypes, antiretroviral experience and duration of HIV infection,” The Journal of Antimicrobial Chemotherapy, vol. 65, no. 2, pp. 320–326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. F. Damond, S. Lariven, B. Roquebert et al., “Virological and immunological response to HAART regimen containing integrase inhibitors in HIV-2-infected patients,” AIDS, vol. 22, no. 5, pp. 665–666, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. N. Garrett, L. Xu, E. Smit, B. Ferns, S. El-Gadi, and J. Anderson, “Raltegravir treatment response in an HIV-2 infected patient: a case report,” AIDS, vol. 22, no. 9, pp. 1091–1092, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Salgado, C. Toro, A. Simón et al., “Mutation N155H in HIV-2 integrase confers high phenotypic resistance to raltegravir and impairs replication capacity,” Journal of Clinical Virology, vol. 46, no. 2, pp. 173–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. M. O. C. Ota, D. O'Donovan, A. S. Alabi et al., “Maternal HIV-1 and HIV-2 infection and child survival in the Gambia,” AIDS, vol. 14, no. 4, pp. 435–439, 2000. View at Publisher · View at Google Scholar · View at Scopus
  94. P. Lorenzi, V. M. Spicher, B. Laubereau, C. Kind, O. Irion, and L. Kaiser, “Antiretroviral therapies in pregnancy: maternal, fetal and neonatal effects,” AIDS, vol. 12, no. 18, pp. F241–F247, 1998. View at Google Scholar
  95. M. Mirochnick and E. Capparelli, “Pharmacokinetics of antiretrovirals in pregnant women,” Clinical Pharmacokinetics, vol. 43, no. 15, pp. 1071–1087, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Van Der Lugt, A. Colbers, and D. Burger, “Clinical pharmacology of HIV protease inhibitors in pregnancy,” Current Opinion in HIV and AIDS, vol. 3, no. 6, pp. 620–626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. B. M. Best, A. M. Stek, M. Mirochnick et al., “Lopinavir tablet pharmacokinetics with an increased dose during pregnancy,” Journal of Acquired Immune Deficiency Syndromes, vol. 54, no. 4, pp. 381–388, 2010. View at Publisher · View at Google Scholar
  98. J. van der Lugt, A. Colbers, J. Molto et al., “The pharmacokinetics, safety and efficacy of boosted saquinavir tablets in HIV type-1-infected Pregnant women,” Antiviral Therapy, vol. 14, no. 3, pp. 443–450, 2009. View at Google Scholar · View at Scopus
  99. N. von Hentig, G. Nísius, T. Lennemann et al., “Pharmacokinetics, safety and efficacy of saquinavir/ritonavir 1,000/100 mg twice daily as HIV type-1 therapy and transmission prophylaxis in pregnancy,” Antiviral Therapy, vol. 13, no. 8, pp. 1039–1046, 2008. View at Google Scholar · View at Scopus
  100. J. Ghosn, I. De Montgolfier, C. Cornélie et al., “Antiretroviral therapy with a twice-daily regimen containing 400 milligrams of indinavir and 100 milligrams of ritonavir in human immunodeficiency virus type 1-infected women during pregnancy,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 4, pp. 1542–1544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. K. Squires, B. Olmscheid, and S. L. Zhang, “Tenofovir-DF (TDF)-containing antiretroviral (ARV) regimens for treatment of HIV in pregnancy: findings from the antiretroviral pregnancy registry (APR),” in Proceedings of the 49th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC '09), San Francisco, Calif, USA, 2009.
  102. R. F. L'Homme, H. M. Nijland, L. Gras et al., “Clinical experience with the combined use of lopinavir/ritonavir and rifampicin,” AIDS, vol. 23, no. 7, pp. 863–865, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. C. J. L. La Porte, E. P. H. Colbers, R. Bertz et al., “Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with rifampin in healthy volunteers,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 5, pp. 1553–1560, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. G. D. Kirk, O. A. Lesi, M. Mendy et al., “The Gambia Liver Cancer Study: Infection with hepatitis B and C and the risk of hepatocellular carcinoma in West Africa,” Hepatology, vol. 39, no. 1, pp. 211–219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. E. Collenberg, T. Ouedraogo, J. Ganamé et al., “Seroprevalence of six different viruses among pregnant women and blood donors in rural and urban Burkina Faso: a comparative analysis,” Journal of Medical Virology, vol. 78, no. 5, pp. 683–692, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. F. Rouet, M. L. Chaix, A. Inwoley et al., “HBV and HCV prevalence and viraemia in HIV-positive and HIV-negative pregnant women in Abidjan, Côte d'Ivoire: the ANRS 1236 study,” Journal of Medical Virology, vol. 74, no. 1, pp. 34–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. U. Dumpis, E. C. Holmes, M. Mendy et al., “Transmission of hepatitis B virus infection in Gambian families revealed by phylogenetic analysis,” Journal of Hepatology, vol. 35, no. 1, pp. 99–104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. J. K. Rockstroh, S. Bhagani, Y. Benhamou et al., “European AIDS Clinical Society (EACS) guidelines for the clinical management and treatment of chronic hepatitis B and C coinfection in HIV-infected adults,” HIV Medicine, vol. 9, no. 2, pp. 82–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. R. Nüesch, J. Ananworanich, P. Srasuebkul et al., “Interruptions of tenofovir/emtricitabine-based antiretroviral therapy in patients with HIV/hepatitis B virus co-infection,” AIDS, vol. 22, no. 1, pp. 152–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. I. F. Grigsby, L. Pham, L. M. Mansky, R. Gopalakrishnan, and K. C. Mansky, “Tenofovir-associated bone density loss,” Therapeutics and Clinical Risk Management, vol. 6, no. 1, pp. 41–47, 2010. View at Google Scholar · View at Scopus
  111. J. N. Nkengasong, C. Maurice, S. Koblavi et al., “Field evaluation of a combination of monospecific enzyme-linked immunosorbent assays for type-specific diagnosis of human immunodeficiency virus type 1 (HIV-1) and HIV-2 infections in HIV-seropositive persons in Abidjan, Ivory Coast,” Journal of Clinical Microbiology, vol. 36, no. 1, pp. 123–127, 1998. View at Google Scholar · View at Scopus
  112. F. Rouet, D. K. Ekouevi, A. Inwoley et al., “Field evaluation of a rapid human immunodeficiency virus (HIV) serial serologic testing algorithm for diagnosis and differentiation of HIV type 1 (HIV-1), HIV-2, and dual HIV-1-HIV-2 infections in West African pregnant women,” Journal of Clinical Microbiology, vol. 42, no. 9, pp. 4147–4153, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Matheron, F. Damond, A. Benard et al., “CD4 cell recovery in treated HIV-2-infected adults is lower than expected: results from the French ANRS CO5 HIV-2 cohort,” AIDS, vol. 20, no. 3, pp. 459–462, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. F. Damond, A. Benard, J. Ruelle et al., “Quality control assessment of Human Immunodeficiency Virus type 2 (HIV-2) viral load quantification assays: results from an international collaboration on HIV-2 infection in 2006,” Journal of Clinical Microbiology, vol. 46, no. 6, pp. 2088–2091, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. M. A. Bender, N. Kumarasamy, K. H. Mayer et al., “Cost-effectiveness of tenofovir as first-line antiretroviral therapy in India,” Clinical Infectious Diseases, vol. 50, no. 3, pp. 416–425, 2010. View at Publisher · View at Google Scholar · View at Scopus