Table of Contents Author Guidelines Submit a Manuscript
Advances in Tribology
Volume 2010 (2010), Article ID 104957, 12 pages
http://dx.doi.org/10.1155/2010/104957
Research Article

On the Modeling of the Synovial Fluid

1Mathematical Institute, Charles University, Sokolovská 83, 18675 Prague, Czech Republic
2Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA

Received 21 December 2009; Accepted 10 May 2010

Academic Editor: Anna Walicka

Copyright © 2010 J. Hron et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. G. Ogston and J. E. Stanier, “The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties,” The Journal of Physiology, vol. 119, no. 2-3, pp. 244–252, 1953. View at Google Scholar
  2. D. A. Gibbs, E. W. Merrill, K. A. Smith, and E. A. Balazs, “Rheology of hyaluronic acid,” Biopolymers, vol. 6, no. 6, pp. 777–791, 1968. View at Google Scholar · View at Scopus
  3. G. B. Thurston and H. Greiling, “Viscoelastic properties of pathological synovial fluids for a wide range of oscillatory shear rates and frequencies,” Rheologica Acta, vol. 17, no. 4, pp. 433–445, 1978. View at Publisher · View at Google Scholar · View at Scopus
  4. J. E. Gomez and G. B. Thurston, “Comparisons of the oscillatory shear viscoelasticity and composition of pathological synovial fluids,” Biorheology, vol. 30, no. 5-6, pp. 409–427, 1993. View at Google Scholar · View at Scopus
  5. S.-P. Rwei, S.-W. Chen, C.-F. Mao, and H.-W. Fang, “Viscoelasticity and wearability of hyaluronate solutions,” Biochemical Engineering Journal, vol. 40, no. 2, pp. 211–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. G. King, “A rheological measurement of three synovial fluids,” Rheologica Acta, vol. 5, no. 1, pp. 41–44, 1966. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Bridges and K. R. Rajagopal, “Pulsatile flow of a chemically-reacting nonlinear fluid,” Computers and Mathematics with Applications, vol. 52, no. 6-7, pp. 1131–1144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Shah, A. Muliana, and K. R. Rajagopal, “Coupled heat conduction and deformation in a viscoelastic composite cylinder,” Mechanics of Time-Dependent Materials, vol. 13, no. 2, pp. 121–147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Darbha and K. R. Rajagopal, “Unsteady motions of degrading or aging linearized elastic solids,” International Journal of Non-Linear Mechanics, vol. 44, no. 5, pp. 478–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Voet and J. G. Voet, Biochemistry, John Wiley & Sons, New York, NY, USA, 3rd edition, 2004.
  11. H. Bothner and O. Wik, “Rheology of hyaluronate,” Acta Oto-Laryngologica. Supplement, vol. 104, no. 442, pp. 25–30, 1987. View at Google Scholar · View at Scopus
  12. J. E. Scott, C. Cummings, A. Brass, and Y. Chen, “Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer,” Biochemical Journal, vol. 274, no. 3, pp. 699–705, 1991. View at Google Scholar · View at Scopus
  13. N. Rudraiah, S. R. Kasiviswanathan, and P. N. Kaloni, “Generalized dispersion in a synovial fluid of human joints,” Biorheology, vol. 28, no. 3-4, pp. 207–219, 1991. View at Google Scholar
  14. W. M. Lai, S. C. Kuei, and V. C. Mow, “Rheological equations for synovial fluids,” Journal of Biomechanical Engineering, vol. 100, no. 4, pp. 169–186, 1978. View at Google Scholar · View at Scopus
  15. E. R. Morris, D. A. Rees, and E. J. Welsh, “Conformation and dynamic interactions in hyaluronate solutions,” Journal of Molecular Biology, vol. 138, no. 2, pp. 383–400, 1980. View at Google Scholar · View at Scopus
  16. P. J. Coleman, D. Scott, R. M. Mason, and J. R. Levick, “Characterization of the effect of high molecular weight hyaluronan on trans-synovial flow in rabbit knees,” Journal of Physiology, vol. 514, no. 1, pp. 265–282, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. T. C. Laurent, U. B. G. Laurent, and J. R. Fraser, “Functions of hyaluronan,” Annals of the Rheumatic Diseases, vol. 54, no. 5, pp. 429–432, 1995. View at Google Scholar · View at Scopus
  18. P. Gribbon, B. C. Heng, and T. E. Hardingham, “The molecular basis of the solution properties of hyaluronan investigated by confocal fluorescence recovery after photobleaching,” Biophysical Journal, vol. 77, no. 4, pp. 2210–2216, 1999. View at Google Scholar · View at Scopus
  19. M. Bulíček, J. Málek, and K. R. Rajagopal, “Mathematical results concerning unsteady flows of chemically reacting incompressible fluids,” in Partial Differential Equations and Fluid Mechanics, vol. 7 of London Mathematical Society Lecture Note Series, no. 364, pp. 26–53, Cambridge University Press, London, UK, 2009. View at Google Scholar
  20. S. N. Antontsev and J. F. Rodrigues, “On stationary thermo-rheological viscous flows,” Annali Dell, vol. 52, pp. 19–36, 2006. View at Google Scholar
  21. S. Turek and A. Ouazzi, “Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems: numerical investigations,” Journal of Numerical Mathematics, vol. 15, no. 4, pp. 299–322, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Kuzmin and S. Turek, “High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter,” Journal of Computational Physics, vol. 198, no. 1, pp. 131–158, 2004. View at Publisher · View at Google Scholar · View at Scopus