Table of Contents Author Guidelines Submit a Manuscript
Advances in Tribology
Volume 2011, Article ID 906481, 13 pages
http://dx.doi.org/10.1155/2011/906481
Research Article

Characterization of Tool Wear in High-Speed Milling of Hardened Powder Metallurgical Steels

Fraunhofer Institute for Production Technology IPT, Steinbachstraße 17, 52074 Aachen, Germany

Received 30 June 2011; Accepted 29 August 2011

Academic Editor: Alexander Tsouknidas

Copyright © 2011 Fritz Klocke et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Jung, “Moderne Hochleistungsstähle für den Formen- und Werkzeugbau, Tagungsunterlagen,” in Proceedings of the Seminar für Werkzeugtechnik, 2002.
  2. D. Biermann, A. Baschin, E. Krebs, and J. Schlenker, “Manufacturing of dies from hardened tool steels by 3-axis micromilling,” Production Engineering, Research and Development, vol. 5, no. 2, pp. 209–217, 2011. View at Publisher · View at Google Scholar
  3. B. Denkena, D. Boehnke, and R. Meyer, “Reduction of wear induced surface zone effects during hard turning by means of new tool geometries,” Production Engineering, Research and Development, vol. 2, no. 2, pp. 123–132, 2008. View at Publisher · View at Google Scholar
  4. H. K. Tonshoff, C. Arendt, and R. Ben Amor, “Cutting of hardened steel,” Annals of the CIRP, vol. 49, no. 2, pp. 547–566, 2000. View at Google Scholar · View at Scopus
  5. F. Klocke, S. Knodt, S. Altmüller, and A. Bilsing, “Fräsverfahren stellen hohe ansprüche an werkzeug und maschine,” Werkstattstechnik Wt, vol. 89, no. 10, pp. 451–455, 1999. View at Google Scholar
  6. F. Klocke, V. Zinkann, and K. Gerschwiler, “Hochleistungswerkstoffe erfordern angepasste Bearbeitungstechnologien,” VDI-Z, vol. 139, no. 6, pp. 18–24, 1997. View at Google Scholar
  7. R. Piotrowiak, V. Schüler, I. Schruff, and C. Spiegelhauer, “Sprühkompaktierte Hochleistungs-Werkzeugstähle,” HTM Zeitschrift für Werkstoffe, Wärmebehandlung und Fertigung, vol. 59, no. 6, pp. 423–431, 2004. View at Google Scholar
  8. A. Schulz, E. Matthaei-Schulz, S. Spangel, R. Tinscher, H. Vetters, and P. Mayr, “Das primärgefüge sprühkompaktierter stähle,” HTM Zeitschrift für Werkstoffe, Wärmebehandlung und Fertigung, vol. 56, no. 2, pp. 104–109, 2001. View at Google Scholar
  9. A. Schulz, V. Uhlenwinkel, C. Escher et al., “Sprühkompaktierte hochlegierte werkzeugstähle—herstellung und eigenschaften,” HTM Zeitschrift für Werkstoffe, Wärmebehandlung und Fertigung, vol. 60, no. 2, pp. 87–95, 2005. View at Google Scholar
  10. Y. Matsumoto, M. M. Barash, and C. R. Liu, “Cutting mechanisms during machining of hardened steels,” Materials Science and Technology, vol. 3, no. 4, pp. 299–305, 1987. View at Google Scholar · View at Scopus
  11. J. Köhler, Berechnung der zerspankräfte bei variierenden spanungsquerschnittsformen, Doctoral thesis, Hannover, Germany, 2010.
  12. M. A. Elbestawi, L. Chen, C. E. Becze, and T. I. El-Wardany, “High-speed milling of dies and molds in their hardened state,” Annals of the CIRP, vol. 46, no. 1, pp. 57–62, 1997. View at Google Scholar · View at Scopus
  13. C. Salomon, “Verfahren zur bearbeitung von metallen oder bei einer bearbeitung durch schneidende werkzeuge sich ähnlich verhaltende werkstoffe,” Deutsches Patent Nr. 523594, 931, 4, 1931.
  14. F. Klocke and W. König, Fertigungsverfahren Drehen, Fräsen, Bohren, vol. 8, Springer, Berlin, Germany, 2008.
  15. P. Koshy, R. C. Dewes, and D. K. Aspinwall, “High speed end milling of hardened AISI D2 tool steel (~58 HRC),” Journal of Materials Processing Technology, vol. 127, no. 2, pp. 266–273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Okada, A. Hosokawa, R. Tanaka, and T. Ueda, “Cutting performance of PVD-coated carbide and CBN tools in hardmilling,” International Journal of Machine Tools and Manufacture, vol. 51, no. 2, pp. 127–132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Klocke and V. Zinkann, “Hochgeschwindigkeitsbearbeitung ändert die Spanbildung,” VDI-Z, vol. 141, no. 3-4, pp. 30–34, 1999. View at Google Scholar
  18. E. El-Magd and C. Treppmann, “Mechanical behaviour of materials at high strain rates,” Scientific Fundamentals of HSC, pp. 113–136, 2001. View at Google Scholar
  19. S. Knodt, Hartfräsen pulvermetallurgisch erzeugter ledeburitischer Werkzeugstähle, Doctoral thesis, Aachen, Germany, 2004.
  20. M. Soković, J. Kopać, L. A. Dobrzański, and M. Adamiak, “Wear of PVD-coated solid carbide end mills in dry high-speed cutting,” Journal of Materials Processing Technology, vol. 157-158, pp. 422–426, 2004. View at Publisher · View at Google Scholar
  21. Y. S. Liao and H. M. Lin, “Mechanism of minimum quantity lubrication in high-speed milling of hardened steel,” International Journal of Machine Tools and Manufacture, vol. 47, no. 11, pp. 1660–1666, 2007. View at Publisher · View at Google Scholar
  22. R. Ben Amor, Thermomechanische Wirkmechanismen und Spanbildung bei der Hochgeschwindigkeitszerspanung, Doctoral thesis, Hannover, Germany, 2003.
  23. M. Elbestawi, M. Dumitrescu, T. I. El-Wardany, and J. Böhner, “Effect of carbide tool grades and cutting edge geometry on tool life during high speed machining of hardened tool steel,” in Proceedings of the 2nd International Conference on High Speed Machining, pp. 37–46, 1999.
  24. Y. Altintaş and P. Lee, “Mechanics and dynamics of ball end milling,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 120, no. 4, pp. 684–692, 1998. View at Google Scholar
  25. Y. Altintas, Manufacturing Automation, Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, Cambridge University Press, New York, NY, USA, 2000.
  26. A. Zabel, Prozesssimulation in der zerspanung—modellierung von dreh und fräsprozessen, Habilitation thesis, Dortmund, Germany, 2010.
  27. C. A. van Luttervelt, T. H. C. Childs, I. S. Jawahir et al., “Present situation and future trends in modelling of machining operations progress report of the CIRP working group “modelling of machining operations,” CIRP Annals-Manufacturing Technology, vol. 47, no. 2, pp. 587–624, 1998. View at Google Scholar
  28. I. Lazoglu and S. Y. Liang, “Modeling of ball-end milling forces with cutter axis inclination,” Journal of Manufacturing Science and Engineering, vol. 122, no. 1, pp. 3–11, 2000. View at Google Scholar
  29. R. Zhu, S. G. Kapoor, and R. E. DeVor, “Mechanistic modeling of the ball end milling process for multi-axis machining of free-form surfaces,” Journal of Manufacturing Science and Engineering, vol. 123, no. 3, pp. 369–379, 2001. View at Google Scholar
  30. E. Ozturk and E. Budak, “Modeling of 5-axis milling processes,” Machining Science and Technology, vol. 11, no. 3, pp. 287–311, 2007. View at Publisher · View at Google Scholar
  31. B. Urban, Kinematische und mechanische wirkungen des kugelkopffräsens, Doctoral thesis, Hannover, Germany, 2009.