Table of Contents Author Guidelines Submit a Manuscript
Advances in Tribology
Volume 2012 (2012), Article ID 365414, 7 pages
http://dx.doi.org/10.1155/2012/365414
Research Article

Investigations on Oil Flow Rates Projected on the Casing Walls by Splashed Lubricated Gears

1Laboratoire d’Energétique, Université de Lyon—ECAM Lyon, 40 Montée Saint-Barthélemy, 69321 Lyon Cedex 05, France
2INSA de Lyon, Université de Lyon, LaMCoS, UMR CNRS 5259, Bâtiment Jean d’Alembert, 18-20 Rue des Sciences, 69621 Villeurbanne Cedex, France

Received 26 June 2012; Accepted 19 October 2012

Academic Editor: Ahmet Kahraman

Copyright © 2012 G. Leprince et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Terekhov, “Hydraulic losses in gearboxes with oil immersion,” Vestnik Mashinostroeniya, vol. 55, no. 5, pp. 13–17, 1975. View at Google Scholar · View at Scopus
  2. E. Lauster and M. Boos, “Zum Wärmehaushalt mechanischer Schaltgetriebe für Nutzfahrzeuge,” VDI-Berichte, vol. 488, pp. 45–55, 1983. View at Google Scholar
  3. R. J. Boness, “Churning losses of discs and gears running partially submerged in oil,” in Proceedings of the International Power Transmission and Gearing Conference: New Technologies for Power Transmissions of the 90's, pp. 355–359, Design Engineering Division, ASME, Chicago, Ill, USA, April 1989. View at Scopus
  4. B. R. Höhn, K. Michaelis, and T. Völlmer, “Thermal rating of gear drives: balance between power loss and heat dissipation,” American Gear Manufacturers Association Document, 96FTM8, p. 12, 1996.
  5. P. Luke and A. V. Olver, “A study of churning losses in dip-lubricated spur gears,” Proceedings of the Institution of Mechanical Engineers G, vol. 213, no. 5, pp. 337–346, 1999. View at Google Scholar · View at Scopus
  6. C. Changenet and P. Velex, “A model for the prediction of churning losses in geared transmissions—preliminary results,” Journal of Mechanical Design, vol. 129, no. 1, pp. 128–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Changenet and P. Velex, “Housing influence on churning losses in geared transmissions,” Journal of Mechanical Design, vol. 130, no. 6, Article ID 062603, 6 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Seetharaman and A. Kahraman, “Load-independent spin power losses of a spur gear pair: model formulation,” Journal of Tribology, vol. 131, no. 2, Article ID 022201, 11 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Leprince, C. Changenet, F. Ville, P. Velex, C. Dufau, and F. Jarnias, “Influence of aerated lubricants on gear churning losses—an engineering model,” Tribology Transactions, vol. 54, no. 6, pp. 929–938, 2011. View at Google Scholar
  10. C. Changenet, G. Leprince, F. Ville, and P. Velex, “A note on flow regimes and churning loss modeling,” Journal of Mechanical Design, vol. 133, no. 12, Article ID 121009, 5 pages, 2011. View at Google Scholar
  11. H. Blok, “Transmission de chaleur par projection centrifuge d’huile,” Société d’Etudes de l’Industrie de l’Engrenage, vol. 59, pp. 14–23, 1970. View at Google Scholar
  12. C. Changenet, X. Oviedo-Marlot, and P. Velex, “Power loss predictions in geared transmissions using thermal networks-applications to a six-speed manual gearbox,” Journal of Mechanical Design, vol. 128, no. 3, pp. 618–625, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. B. R. Höhn, K. Michaelis, and H. P. Otto, “Influence of immersion depth of dip lubricated gears on power loss, bulk temperature and scuffing load carrying capacity,” International Journal of Mechanics and Materials in Design, vol. 4, no. 2, pp. 145–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Durand de Gevigney, C. Changenet, F. Ville, and P. Velex, “Thermal modelling of a back-to-back gearbox test machine: application to the FZG test rig,” Proceedings of the Institution of Mechanical Engineers J, vol. 266, no. 6, pp. 501–515, 2012. View at Google Scholar
  15. S. Candel, Mécaniques des Fluides—Cours, Dunod, Paris, France, 2nd edition, 1995.