Table of Contents Author Guidelines Submit a Manuscript
Advances in Tribology
Volume 2013 (2013), Article ID 213914, 8 pages
http://dx.doi.org/10.1155/2013/213914
Research Article

MOORA-Based Tribological Studies on Red Mud Reinforced Aluminum Metal Matrix Composites

1Department of Mechanical Engineering, Kalasalingam University, Anand Nagar, Krishnankoil 626126, India
2Nadar Saraswathi College of Engineering and Technology, Theni 625 531, India
3Department of Mechanical Engineering, P.S.R. Engineering College, Sevalpatti, Sivakasi 626 140, India

Received 25 May 2013; Accepted 5 September 2013

Academic Editor: Patrick De Baets

Copyright © 2013 S. Rajesh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Deuis, C. Subramanian, and J. M. Yellup, “Abrasive wear of aluminium composites—a review,” Wear, vol. 201, no. 1-2, pp. 132–144, 1996. View at Google Scholar · View at Scopus
  2. A. Alahelisten, F. Bergman, M. Olsson, and S. Hogmark, “On the wear of aluminium and magnesium metal matrix composites,” Wear, vol. 165, no. 2, pp. 221–226, 1993. View at Google Scholar · View at Scopus
  3. K. R. Brown, M. S. Venice, and R. A. Woods, “The increasing use of aluminium in automotive applications,” Journal of Materials, vol. 47, pp. 20–23, 1995. View at Google Scholar
  4. S. Kumar and V. Balasubramanian, “Developing a mathematical model to evaluate wear rate of AA7075/SiCp powder metallurgy composites,” Wear, vol. 264, no. 11-12, pp. 1026–1034, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Rahimian, N. Parvin, and N. Ehsani, “The effect of production parameters on microstructure and wear resistance of powder metallurgy Al-Al2O3 composite,” Materials and Design, vol. 32, no. 2, pp. 1031–1038, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Huda, M. Baradie, and M. S. J. Hashoni, “Compaction behaviour of metal matrix composite,” Emerging Metals, vol. 86, pp. 85–92, 1993. View at Publisher · View at Google Scholar
  7. A. P. Sannino and H. J. Rack, “Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion,” Wear, vol. 189, no. 1-2, pp. 1–19, 1995. View at Google Scholar · View at Scopus
  8. B. S. Unlu, “Investigation of tribological and mechanical properties Al2O3-SiC reinforced Al composites manufactured by casting or P/M method,” Materials and Design, vol. 29, no. 10, pp. 2002–2008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Tang, X. Wu, S. Ge et al., “Dry sliding friction and wear properties of B4C particulate-reinforced Al-5083 matrix composites,” Wear, vol. 264, no. 7-8, pp. 555–561, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Liu, W. Li, Y. Tang, B. Shen, and W. Hu, “Friction and wear properties of short carbon fiber reinforced aluminum matrix composites,” Wear, vol. 266, no. 7-8, pp. 733–738, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. P. K. Rohatgi, B. F. Schultz, A. Daoud, and W. W. Zhang, “Tribological performance of A206 aluminum alloy containing silica sand particles,” Tribology International, vol. 43, no. 1-2, pp. 455–466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Iwai, H. Yoneda, and T. Honda, “Sliding wear behavior of SiC whisker-reinforced aluminum composite,” Wear, vol. 181–183, no. 2, pp. 594–602, 1995. View at Google Scholar · View at Scopus
  13. Y. Sahin and K. Ozdin, “A model for the abrasive wear behaviour of aluminium based composites,” Materials and Design, vol. 29, no. 3, pp. 728–733, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Basavarajappa, G. Chandramohan, and J. Paulo Davim, “Application of Taguchi techniques to study dry sliding wear behaviour of metal matrix composites,” Materials and Design, vol. 28, no. 4, pp. 1393–1398, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Dharmalingam, R. Subramanian, K. Somasundara Vinoth, and B. Anandavel, “Optimization of tribological properties in aluminum hybrid metal matrix composites using gray-taguchi method,” Journal of Materials Engineering and Performance, vol. 20, no. 8, pp. 1457–1466, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Singh, B. K. Prasad, D. P. Mondal, and A. K. Jha, “Dry sliding wear behaviour of an aluminium alloy-granite particle composite,” Tribology International, vol. 34, no. 8, pp. 557–567, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Zhang, A. Zhang, Z. Zhen, F. Lv, P. K. Chu, and J. Ji, “Red mud/polypropylene composite with mechanical and thermal properties,” Journal of Composite Materials, vol. 45, no. 26, pp. 2811–2816, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. W. K. M. Brauers and E. K. Zavadskas, “The MOORA method and its application to privatization in a transition economy,” Control and Cybernetics, vol. 35, no. 2, pp. 445–469, 2006. View at Google Scholar · View at Scopus
  19. W. K. M. Brauers and E. K. Zavadskas, “Project management by multimoora as an instrument for transition economies,” Technological and Economic Development of Economy, vol. 16, no. 1, pp. 5–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. V. S. Gadakh, “Application of MOORA method for parametric optimization of milling process,” International Journal of Applied Engineering Research, vol. 1, pp. 743–757, 2011. View at Google Scholar