Table of Contents Author Guidelines Submit a Manuscript
Advances in Urology
Volume 2008 (2008), Article ID 720840, 12 pages
http://dx.doi.org/10.1155/2008/720840
Review Article

Genetic Counseling in Renal Masses

1Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, C/Prof. Beltrán Báguena 8, 46009 Valencia, Spain
2Service of Urology, Fundación Instituto Valenciano de Oncología, C/Prof. Beltrán Báguena 8, 46009 Valencia, Spain

Received 29 March 2008; Accepted 9 September 2008

Academic Editor: F. Algaba

Copyright © 2008 José Antonio López-Guerrero et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Godley and S. W. Kim, “Renal cell carcinoma,” Current Opinion in Oncology, vol. 14, no. 3, pp. 280–285, 2002. View at Publisher · View at Google Scholar
  2. L. M. Hock, J. Lynch, and K. C. Balaji, “Increasing incidence of all stages of kidney cancer in the last 2 decades in the United States: an analysis of surveillance, epidemiology and end results program data,” The Journal of Urology, vol. 167, no. 1, pp. 57–60, 2002. View at Publisher · View at Google Scholar
  3. A. J. Pantuck, A. Zisman, and A. S. Belldegrun, “The changing natural history of renal cell carcinoma,” The Journal of Urology, vol. 166, no. 5, pp. 1611–1623, 2001. View at Publisher · View at Google Scholar
  4. L. G. Luciani, R. Cestari, and C. Tallarigo, “Incidental renal cell carcinoma—age and stage characterization and clinical implications: study of 1092 patients (1982–1997),” Urology, vol. 56, no. 1, pp. 58–62, 2000. View at Publisher · View at Google Scholar
  5. G. Kovacs, M. Akhtar, B. J. Beckwith et al., “The Heidelberg classification of renal cell tumours,” The Journal of Pathology, vol. 183, no. 2, pp. 131–133, 1997. View at Publisher · View at Google Scholar
  6. C. P. Pavlovich and L. S. Schmidt, “Searching for the hereditary causes of renal-cell carcinoma,” Nature Reviews Cancer, vol. 4, no. 5, pp. 381–393, 2004. View at Publisher · View at Google Scholar · View at PubMed
  7. B. Zbar, R. Klausner, and W. M. Linehan, “Studying cancer families to identify kidney cancer genes,” Annual Review of Medicine, vol. 54, pp. 217–233, 2003. View at Publisher · View at Google Scholar · View at PubMed
  8. M. Zimmer and O. Iliopoulos, “Molecular genetics of kidney cancer,” Cancer Treatment and Research, vol. 116, pp. 3–27, 2003. View at Google Scholar
  9. S. Richard, R. Lidereau, and S. Giraud, “The growing family of hereditary renal cell carcinoma,” Nephrology Dialysis Transplantation, vol. 19, no. 12, pp. 2954–2958, 2004. View at Publisher · View at Google Scholar · View at PubMed
  10. H. H. Kazazian, Jr., C. D. Boehm, and W. K. Seltzer, “ACMG recommendations for standards for interpretation of sequence variations,” Genetics in Medicine, vol. 2, no. 5, pp. 302–303, 2000. View at Google Scholar
  11. S. Richard, J. Graff, J. Lindau, and F. Resche, “von Hippel-Lindau disease,” The Lancet, vol. 363, no. 9416, pp. 1231–1234, 2004. View at Publisher · View at Google Scholar · View at PubMed
  12. R. R. Lonser, G. M. Glenn, M. Walther et al., “von Hippel-Lindau disease,” The Lancet, vol. 361, no. 9374, pp. 2059–2067, 2003. View at Publisher · View at Google Scholar · View at PubMed
  13. W. G. Kaelin, Jr., “Molecular basis of the VHL hereditary cancer syndrome,” Nature Reviews Cancer, vol. 2, no. 9, pp. 673–682, 2002. View at Publisher · View at Google Scholar · View at PubMed
  14. B. Zbar, T. Kishida, F. Chen et al., “Germline mutations in the von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan,” Human Mutation, vol. 8, no. 4, pp. 348–357, 1996. View at Publisher · View at Google Scholar
  15. C. E. Stebbins, W. G. Kaelin, Jr., and N. P. Pavletich, “Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function,” Science, vol. 284, no. 5413, pp. 455–461, 1999. View at Publisher · View at Google Scholar
  16. S. C. Clifford, M. E. Cockman, A. C. Smallwood et al., “Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease,” Human Molecular Genetics, vol. 10, no. 10, pp. 1029–1038, 2001. View at Google Scholar
  17. M. A. Hoffman, M. Ohh, H. Yang, J. M. Klco, M. Ivan, and W. G. Kaelin, Jr., “von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF,” Human Molecular Genetics, vol. 10, no. 10, pp. 1019–1027, 2001. View at Publisher · View at Google Scholar
  18. D. E. Feldman, C. Spiess, D. E. Howard, and J. Frydman, “Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding,” Molecular Cell, vol. 12, no. 5, pp. 1213–1224, 2003. View at Publisher · View at Google Scholar
  19. C. Cybulski, K. Krzystolik, A. Murgia et al., “Germline mutations in the von Hippel-Lindau (VHL) gene in patients from Poland: disease presentation in patients with deletions of the entire VHL gene,” Journal of Medical Genetics, vol. 39, no. 7, p. E38, 2002. View at Publisher · View at Google Scholar
  20. J. K. Maranchie, A. Afonso, P. S. Albert et al., “Solid renal tumor severity in von Hippel-Lindau disease is related to germline deletion length and location,” Human Mutation, vol. 23, no. 1, pp. 40–46, 2004. View at Publisher · View at Google Scholar · View at PubMed
  21. C. Stolle, G. Glenn, B. Zbar et al., “Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene,” Human Mutation, vol. 12, no. 6, pp. 417–423, 1998. View at Publisher · View at Google Scholar
  22. J. Hoebeeck, R. van der Luijt, B. Poppe et al., “Rapid detection of VHL exon deletions using real-time quantitative PCR,” Laboratory Investigation, vol. 85, no. 1, pp. 24–33, 2005. View at Publisher · View at Google Scholar · View at PubMed
  23. A. Rasmussen, S. Nava-Salazar, P. Yescas et al., “Von Hippel-Lindau disease germline mutations in Mexican patients with cerebellar hemangioblastoma,” Journal of Neurosurgery, vol. 104, no. 3, pp. 389–394, 2006. View at Google Scholar
  24. M. T. Sgambati, C. Stolle, P. L. Choyke et al., “Mosaicism in von Hippel-Lindau disease: lessons from kindreds with germline mutations identified in offspring with mosaic parents,” American Journal of Human Genetics, vol. 66, no. 1, pp. 84–91, 2000. View at Publisher · View at Google Scholar · View at PubMed
  25. H. P. H. Neumann, B. Bausch, S. R. McWhinney et al., “Germ-line mutations in nonsyndromic pheochromocytoma,” The New England Journal of Medicine, vol. 346, no. 19, pp. 1459–1466, 2002. View at Publisher · View at Google Scholar · View at PubMed
  26. F. M. Richards, A. R. Webster, R. Mcmahon, E. R. Woodward, S. Rose, and E. R. Maher, “Molecular genetic analysis of von Hippel-Lindau disease,” Journal of Internal Medicine, vol. 243, no. 6, pp. 527–533, 1998. View at Publisher · View at Google Scholar
  27. E. R. Maher and C. Eng, “The pressure rises: update on the genetics of phaeochromocytoma,” Human Molecular Genetics, vol. 11, no. 20, pp. 2347–2354, 2002. View at Publisher · View at Google Scholar
  28. J. Bryant, J. Farmer, L. J. Kessler, R. R. Townsend, and K. L. Nathanson, “Pheochromocytoma: the expanding genetic differential diagnosis,” Journal of the National Cancer Institute, vol. 95, no. 16, pp. 1196–11204, 2003. View at Google Scholar
  29. M. Priesemann, K. M. Davies, L. A. Perry et al., “Benefits of screening in von Hippel-Lindau disease—comparison of morbidity associated with initial tumours in affected parents and children,” Hormone Research, vol. 66, no. 1, pp. 1–5, 2006. View at Publisher · View at Google Scholar · View at PubMed
  30. ASCO, “American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility,” Journal of Clinical Oncology, vol. 21, no. 12, pp. 2397–2406, 2003. View at Publisher · View at Google Scholar · View at PubMed
  31. O. Iliopoulos and C. Eng, “Genetic and clinical aspects of familial renal neoplasms,” Seminars in Oncology, vol. 27, no. 2, pp. 138–149, 2000. View at Google Scholar
  32. B. Zbar, G. Glenn, I. Lubensky et al., “Hereditary papillary renal cell carcinoma: clinical studies in 10 families,” The Journal of Urology, vol. 153, no. 3, pp. 907–912, 1995. View at Publisher · View at Google Scholar
  33. L. Schmidt, F.-M. Duh, F. Chen et al., “Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas,” Nature Genetics, vol. 16, no. 1, pp. 68–73, 1997. View at Publisher · View at Google Scholar · View at PubMed
  34. M. Miller, K. Ginalski, B. Lesyng, N. Nakaigawa, L. Schmidt, and B. Zbar, “Structural basis of oncogenic activation caused by point mutations in the kinase domain of the MET proto-oncogene: modeling studies,” Proteins: Structure, Function, and Bioinformatics, vol. 44, no. 1, pp. 32–43, 2001. View at Publisher · View at Google Scholar · View at PubMed
  35. I. P. M. Tomlinson, N. A. Alam, A. J. Rowan et al., “Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer,” Nature Genetics, vol. 30, no. 4, pp. 406–410, 2002. View at Publisher · View at Google Scholar · View at PubMed
  36. M.-H. Wei, O. Toure, G. M. Glenn et al., “Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer,” Journal of Medical Genetics, vol. 43, no. 1, pp. 18–27, 2006. View at Publisher · View at Google Scholar · View at PubMed
  37. N. A. Alam, E. Barclay, A. J. Rowan et al., “Clinical features of multiple cutaneous and uterine leiomyomatosis: an underdiagnosed tumor syndrome,” Archives of Dermatology, vol. 141, no. 2, pp. 199–206, 2005. View at Publisher · View at Google Scholar · View at PubMed
  38. J. R. Toro, M. L. Nickerson, M.-H. Wei et al., “Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America,” American Journal of Human Genetics, vol. 73, no. 1, pp. 95–106, 2003. View at Publisher · View at Google Scholar · View at PubMed
  39. V. Launonen, O. Vierimaa, M. Kiuru et al., “Inherited susceptibility to uterine leiomyomas and renal cell cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3387–3392, 2001. View at Publisher · View at Google Scholar · View at PubMed
  40. N. A. Alam, A. J. Rowan, N. C. Worth et al., “Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency,” Human Molecular Genetics, vol. 12, no. 11, pp. 1241–1252, 2003. View at Publisher · View at Google Scholar
  41. M. Pithukpakorn, M.-H. Wei, O. Toure et al., “Fumarate hydratase enzyme activity in lymphoblastoid cells and fibroblasts of individuals in families with hereditary leiomyomatosis and renal cell cancer,” Journal of Medical Genetics, vol. 43, no. 9, pp. 755–762, 2006. View at Publisher · View at Google Scholar · View at PubMed
  42. J. S. Isaacs, J. J. Yun, D. R. Mole et al., “HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability,” Cancer Cell, vol. 8, no. 2, pp. 143–153, 2005. View at Publisher · View at Google Scholar · View at PubMed
  43. H. J. Lehtonen, M. Kiuru, S. K. Ylisaukko-Oja et al., “Increased risk of cancer in patients with fumarate hydratase germline mutation,” Journal of Medical Genetics, vol. 43, no. 6, pp. 523–526, 2006. View at Publisher · View at Google Scholar · View at PubMed
  44. S. K. Ylisaukko-Oja, M. Kiuru, H. J. Lehtonen et al., “Analysis of fumarate hydratase mutations in a population-based series of early onset uterine leiomyosarcoma patients,” International Journal of Cancer, vol. 119, no. 2, pp. 283–287, 2006. View at Publisher · View at Google Scholar · View at PubMed
  45. B. Zbar, W. G. Alvord, G. Glenn et al., “Risk of renal and colonic neoplasms and spontaneous pneumothorax pneurnothorax in the Birt-Hogg-Dubé syndrome,” Cancer Epidemiology Biomarkers & Prevention, vol. 11, no. 4, pp. 393–400, 2002. View at Google Scholar
  46. L. S. Schmidt, M. L. Nickerson, M. B. Warren et al., “Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt-Hogg-Dubé syndrome,” American Journal of Human Genetics, vol. 76, no. 6, pp. 1023–1033, 2005. View at Publisher · View at Google Scholar · View at PubMed
  47. M. L. Nickerson, M. B. Warren, J. R. Toro et al., “Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome,” Cancer Cell, vol. 2, no. 2, pp. 157–164, 2002. View at Publisher · View at Google Scholar
  48. C. P. Pavlovich, R. L. Grubb, III, K. Hurley et al., “Evaluation and management of renal tumors in the Birt-Hogg-Dubé syndrome,” The Journal of Urology, vol. 173, no. 5, pp. 1482–1486, 2005. View at Publisher · View at Google Scholar · View at PubMed
  49. J. D. Carpten, C. M. Robbins, A. Villablanca et al., “HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome,” Nature Genetics, vol. 32, no. 4, pp. 676–680, 2002. View at Publisher · View at Google Scholar · View at PubMed
  50. M. B. Warren, C. A. Torres-Cabala, M. L. Turner et al., “Expression of Birt-Hogg-Dubé gene mRNA in normal and neoplastic human tissues,” Modern Pathology, vol. 17, no. 8, pp. 998–1011, 2004. View at Publisher · View at Google Scholar · View at PubMed
  51. M. Baba, S.-B. Hong, N. Sharma et al., “Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 42, pp. 15552–15557, 2006. View at Publisher · View at Google Scholar · View at PubMed
  52. S. K. Khoo, K. Kahnoski, J. Sugimura et al., “Inactivation of BHD in sporadic renal tumors,” Cancer Research, vol. 63, no. 15, pp. 4583–4587, 2003. View at Google Scholar
  53. C. D. Vocke, Y. Yang, C. P. Pavlovich et al., “High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dubé-associated renal tumors,” Journal of the National Cancer Institute, vol. 97, no. 12, pp. 931–935, 2005. View at Publisher · View at Google Scholar · View at PubMed
  54. J. R. Toro, G. Glenn, P. Duray et al., “Birt-Hogg-Dubé syndrome: a novel marker of kidney neoplasia,” Archives of Dermatology, vol. 135, no. 10, pp. 1195–1202, 1999. View at Publisher · View at Google Scholar
  55. R. B. Graham, M. Nolasco, B. Peterlin, and C. K. Garcia, “Nonsense mutations in folliculin presenting as isolated familial spontaneous pneumothorax in adults,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 1, pp. 39–44, 2005. View at Publisher · View at Google Scholar · View at PubMed
  56. J. N. Painter, H. Tapanainen, M. Somer, P. Tukiainen, and K. Aittomäki, “A 4-bp deletion in the Birt-Hogg-Dubé gene (FLCN) causes dominantly inherited spontaneous pneumothorax,” American Journal of Human Genetics, vol. 76, no. 3, pp. 522–527, 2005. View at Publisher · View at Google Scholar · View at PubMed
  57. N. F. da Silva, D. Gentle, L. B. Hesson, D. G. Morton, F. Latif, and E. R. Maher, “Analysis of the Birt-Hogg-Dubé (BHD) tumour suppressor gene in sporadic renal cell carcinoma and colorectal cancer,” Journal of Medical Genetics, vol. 40, no. 11, pp. 820–824, 2003. View at Publisher · View at Google Scholar
  58. K. Kahnoski, S. K. Khoo, N. T. Nassif et al., “Alterations of the Birt-Hogg-Dubé gene (BHD) in sporadic colorectal tumours,” Journal of Medical Genetics, vol. 40, no. 7, pp. 511–515, 2003. View at Publisher · View at Google Scholar
  59. J.-H. Shin, Y.-K. Shin, J.-L. Ku et al., “Mutations of the Birt-Hogg-Dubé (BHD) gene in sporadic colorectal carcinomas and colorectal carcinoma cell lines with microsatellite instability,” Journal of Medical Genetics, vol. 40, no. 5, pp. 364–367, 2003. View at Publisher · View at Google Scholar
  60. S. Madhusudan, G. Deplanque, J. P. Braybrooke et al., “Antiangiogenic therapy for von Hippel-Lindau disease,” Journal of the American Medical Association, vol. 291, no. 8, pp. 943–944, 2004. View at Publisher · View at Google Scholar · View at PubMed
  61. C. Migliore and S. Giordano, “Molecular cancer therapy: can our expectation be MET?,” European Journal of Cancer, vol. 44, no. 5, pp. 641–651, 2008. View at Publisher · View at Google Scholar · View at PubMed
  62. W. M. Linehan, P. A. Pinto, R. Srinivasan et al., “Identification of the genes for kidney cancer: opportunity for disease-specific targeted therapeutics,” Clinical Cancer Research, vol. 13, no. 2, part 2, pp. 671s–679s, 2007. View at Publisher · View at Google Scholar · View at PubMed
  63. P. J. Pollard, J. J. Brière, N. A. Alam et al., “Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations,” Human Molecular Genetics, vol. 14, no. 15, pp. 2231–2239, 2005. View at Publisher · View at Google Scholar · View at PubMed
  64. J. E. Wagner, “Practical and ethical issues with genetic screening,” Hematology, vol. 2005, pp. 498–502, 2005. View at Publisher · View at Google Scholar · View at PubMed
  65. E. Rantanen, M. Hietala, U. Kristoffersson et al., “Regulations and practices of genetic counselling in 38 European countries: the perspective of national representatives,” European Journal of Human Genetics, vol. 16, no. 10, pp. 1208–1216, 2008. View at Publisher · View at Google Scholar · View at PubMed
  66. E. Rantanen, M. Hietala, U. Kristoffersson et al., “What is ideal genetic counselling? A survey of current international guidelines,” European Journal of Human Genetics, vol. 16, no. 4, pp. 445–452, 2008. View at Publisher · View at Google Scholar · View at PubMed