Table of Contents Author Guidelines Submit a Manuscript
Advances in Urology
Volume 2011, Article ID 816342, 7 pages
http://dx.doi.org/10.1155/2011/816342
Review Article

Role of KIT-Positive Interstitial Cells of Cajal in the Urinary Bladder and Possible Therapeutic Target for Overactive Bladder

Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan

Received 31 January 2011; Revised 4 April 2011; Accepted 5 June 2011

Academic Editor: John PFA Heesakkers

Copyright © 2011 Yasue Kubota et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. F. Stewart, J. B. Van Rooyen, G. W. Cundiff et al., “Prevalence and burden of overactive bladder in the United States,” World Journal of Urology, vol. 20, no. 6, pp. 327–336, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. I. Milsom, W. Stewart, and J. Thuroff, “The prevalence of overactive bladder,” American Journal of Managed Care, vol. 6, no. 11, pp. S565–S573, 2000. View at Google Scholar · View at Scopus
  3. J. N. Liberman, T. L. Hunt, W. F. Stewart et al., “Health-related quality of life among adults with symptoms of overactive bladder: results from a U.S. community-based survey,” Urology, vol. 57, no. 6, pp. 1044–1050, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. M. C. Michel and C. R. Chapple, “Basic mechanisms of yrgency: preclinical and clinical evidence,” European Urology, vol. 56, no. 2, pp. 298–308, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. J. Drake, I. W. Mills, and J. I. Gillespie, “Model of peripheral autonomous modules and a myovesical plexus in normal and overactive bladder function,” Lancet, vol. 358, no. 9279, pp. 401–403, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Yoshimura, Y. Kaiho, M. Miyazato et al., “Therapeutic receptor targets for lower urinary tract dysfunction,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 377, no. 4–6, pp. 437–448, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. L. A. Birder and W. C. de Groat, “Mechanisms of disease: involvement of the urothelium in bladder dysfunction,” Nature Clinical Practice Urology, vol. 4, no. 1, pp. 46–54, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. K. M. Sanders, “A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract,” Gastroenterology, vol. 111, no. 2, pp. 492–515, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. G. D. S. Hirst and S. M. Ward, “Interstitial cells: involvement in rhythmicity and neural control of gut smooth muscle,” Journal of Physiology, vol. 550, part 2, pp. 337–346, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. H. Maeda, A. Yamagata, S. Nishlkawa et al., “Requirement of c-kit for development of intestinal pacemaker system,” Development, vol. 116, no. 2, pp. 369–375, 1992. View at Google Scholar · View at Scopus
  11. K. D. McCloskey, “Interstitial cells in the urinary bladder—localization and function,” Neurourology and Urodynamics, vol. 29, no. 1, pp. 82–87, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. R. J. Lang, M. A. Tonta, B. Z. Zoltkowski, W. F. Meeker, I. Wendt, and H. C. Parkington, “Pyeloureteric peristalsis: role of atypical smooth muscle cells and interstitial cells of Cajal-like cells as pacemakers,” Journal of Physiology, vol. 576, part 3, pp. 695–705, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. H. Hashitani, “Interaction between interstitial cells and smooth muscles in the lower urinary tract and penis,” Journal of Physiology, vol. 576, part 3, pp. 707–714, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. P. J. Smet, J. Jonavicius, V. R. Marshall, and J. de Vente, “Distribution of nitric oxide synthase-immunoreactive nerves and identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry,” Neuroscience, vol. 71, no. 2, pp. 337–348, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. G. P. Sui, S. Rothery, E. Dupont, C. H. Fry, and N. J. Severs, “Gap junctions and connexin expression in human suburothelial interstitial cells,” BJU International, vol. 90, no. 1, pp. 118–129, 2002. View at Google Scholar
  16. O. J. Wiseman, C. J. Fowler, and D. N. Landon, “The role of the human bladder lamina propria myofibroblast,” BJU International, vol. 91, no. 1, pp. 89–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Ost, T. Roskams, F. Van Der Aa, and D. De Ridder, “Topography of the vanilloid receptor in the human bladder: more than just the nerve fibers,” Journal of Urology, vol. 168, no. 1, pp. 293–297, 2002. View at Google Scholar · View at Scopus
  18. G. P. Sui, C. Wu, and C. H. Fry, “Characterization of the purinergic receptor subtype on guinea-pig suburothelial myofibroblasts,” BJU International, vol. 97, no. 6, pp. 1327–1331, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. S. Grol, P. B. M. Essers, G. A. van Koeveringe, P. Martinez-Martinez, J. de Vente, and J. I. Gillespie, “M3 muscarinic receptor expression on suburothelial interstitial cells,” BJU International, vol. 104, no. 3, pp. 398–405, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. R. A. Davidson and K. D. McCloskey, “Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons,” Journal of Urology, vol. 173, no. 4, pp. 1385–1390, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. K. D. McCloskey and A. M. Gurney, “Kit positive cells in the guinea pig bladder,” Journal of Urology, vol. 168, no. 2, pp. 832–836, 2002. View at Google Scholar · View at Scopus
  22. L. Johnston, C. Carson, A. D. Lyons, R. A. Davidson, and K. D. McCloskey, “Cholinergic-induced Ca2+ signaling in interstitial cells of Cajal from the guinea pig bladder,” American Journal of Physiology—Renal Physiology, vol. 294, no. 3, pp. F645–F655, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. L. Johnston, S. Woolsey, R. M. Cunningham et al., “Morphological expression of KIT positive interstitial cells of Cajal in human bladder,” Journal of Urology, vol. 184, no. 1, pp. 370–377, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M. J. Drake, C. H. Fry, and B. Eyden, “Structural characterization of myofibroblasts in the bladder,” BJU International, vol. 97, no. 1, pp. 29–32, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. S. M. Ward and K. M. Sanders, “Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract,” Journal of Physiology, vol. 576, no. 3, pp. 675–682, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. K. M. Sanders, S. D. Koh, and S. M. Ward, “Interstitial cells of Cajal as pacemakers in the gastrointestinal tract,” Annual Review of Physiology, vol. 68, pp. 307–343, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. A. F. Brading, “Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function,” Journal of Physiology, vol. 570, no. 1, pp. 13–22, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. G. N. Sibley, “A comparison of spontaneous and nerve-mediated activity in bladder muscle from man, pig and rabbit,” Journal of Physiology, vol. 354, pp. 431–443, 1984. View at Google Scholar · View at Scopus
  29. H. Hashitani, H. Fukuta, H. Takano, M. F. Klemm, and H. Suzuki, “Origin and propagation of spontaneous excitation in smooth muscle of the guinea-pig urinary bladder,” Journal of Physiology, vol. 530, part 2, pp. 273–286, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. G. P. Sui, C. Wu, N. Severs, D. Newgreen, and C. H. Fry, “The association between T-type Ca2+ current and outward current in isolated human detrusor cells from stable and overactive bladders,” BJU International, vol. 99, no. 2, pp. 436–441, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. Kanai, J. Roppolo, Y. Ikeda et al., “Origin of spontaneous activity in neonatal and adult rat bladders and its enhancement by stretch and muscarinic agonists,” American Journal of Physiology—Renal Physiology, vol. 292, no. 3, pp. F1065–F1072, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. Y. Ikeda, C. Fry, F. Hayashi, D. Stolz, D. Griffiths, and A. J. Kanai, “Role of gap junctions in spontaneous activity of the rat bladder,” American Journal of Physiology—Renal Physiology, vol. 293, no. 4, pp. F1018–F1025, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. H. Hashitani, Y. Yanai, and H. Suzuki, “Role of interstitial cells and gap junctions in the transmission of spontaneous Ca2+ signals in detrusor smooth muscles of the guinea-pig urinary bladder,” Journal of Physiology, vol. 559, part 2, pp. 567–581, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. S. M. Biers, J. M. Reynard, T. Doore, and A. F. Brading, “The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor,” BJU International, vol. 97, no. 3, pp. 612–616, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. B. Vahabi, N. G. McKay, K. Lawson, and D. J. Sellers, “The role of c-kit-positive interstitial cells in mediating phasic contractions of bladder strips from streptozotocin-induced diabetic rats,” BJU International, vol. 107, no. 9, pp. 1480–1487, 2011. View at Publisher · View at Google Scholar · View at PubMed
  36. G. P. Sui, C. Wu, A. Roosen, Y. Ikeda, A. J. Kanai, and C. H. Fry, “Modulation of bladder myofibroblast activity: implications for bladder function,” American Journal of Physiology—Renal Physiology, vol. 295, no. 3, pp. F688–F697, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. G. P. Sui, C. Wu, and C. H. Fry, “Electrical characteristics of suburothelial cells isolated from the human bladder,” Journal of Urology, vol. 171, no. 2 I, pp. 938–943, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. U. A. Anderson, C. Carson, and K. D. McCloskey, “KCNQ currents and their contribution to resting membrane potential and the excitability of interstitial cells of Cajal from the guinea pig bladder,” Journal of Urology, vol. 182, no. 1, pp. 330–336, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. M. S. Rahnama'i, G. A. van Koeveringe, P. B. Essers et al., “Prostaglandin receptor EP1 and EP2 site in guinea pig bladder urothelium and lamina propria,” Journal of Urology, vol. 183, no. 3, pp. 1241–1247, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. Y. Kubota, S. M. Biers, K. Kohri, and A. F. Brading, “Effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder,” Neurourology and Urodynamics, vol. 25, no. 3, pp. 205–210, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. T. Tsujimura, S. Hirota, S. Nomura et al., “Characterization of Ws mutant allele of rats: a 12-base deletion in tyrosine kinase domain of c-kit gene,” Blood, vol. 78, no. 8, pp. 1942–1946, 1991. View at Google Scholar · View at Scopus
  42. E. Albertí, H. B. Mikkelsen, X. Y. Wang et al., “Pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 292, no. 6, pp. G1499–G1510, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. K. Isozaki, S. Hirota, A. Nakama et al., “Disturbed intestinal movement, bile reflux to the stomach, and deficiency of c-kit-expressing cells in Ws/Ws mutant rats,” Gastroenterology, vol. 109, no. 2, pp. 456–464, 1995. View at Publisher · View at Google Scholar · View at Scopus
  44. K. D. McCloskey, U. A. Anderson, R. A. Davidson, Y. R. Bayguinov, K. M. Sanders, and S. M. Ward, “Comparison of mechanical and electrical activity and interstitial cells of Cajal in urinary bladders from wild-type and W/Wv mice,” British Journal of Pharmacology, vol. 156, no. 2, pp. 273–283, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. S. Okada, Y. Kojima, Y. Kubota, K. Mizuno, S. Sasaki, and K. Kohri, “Attenuation of bladder overactivity in KIT mutant rats,” BJU International, vol. 108, no. 2b, pp. E97–E103, 2011. View at Publisher · View at Google Scholar · View at PubMed
  46. S. Nakagawa and T. Kitoh, “Measurement of KIT ligand/stem cell factor: clinical and biochemical significance,” Current Opinion in Hematology, vol. 7, no. 3, pp. 133–142, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Kubota, Y. Kojima, M. Hayase, S. Sasaki, and K. Kohri, “A Kit ligand stem cell factor as a possible mediator inducing overactive bladder,” Journal of Urology, vol. 183, supplement 4, p. e73, 2010. View at Google Scholar
  48. L. Reber, C. A. Da Silva, and N. Frossard, “Stem cell factor and its receptor c-Kit as targets for inflammatory diseases,” European Journal of Pharmacology, vol. 533, no. 1–3, pp. 327–340, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. K. M. Sanders, “Interstitial cells of Cajal at the clinical and scientific interface,” Journal of Physiology, vol. 576, part 3, pp. 683–687, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. H. Hashitani, “Interaction between interstitial cells and smooth muscles in the lower urinary tract and penis,” Journal of Physiology, vol. 576, part 3, pp. 707–714, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. A. F. Brading, “A myogenic basis for the overactive bladder,” Urology, vol. 50, no. 6A, pp. 57–67, 1997. View at Google Scholar
  52. H. Hashitani, A. F. Brading, and H. Suzuki, “Correlation between spontaneous electrical, calcium and mechanical activity in detrusor smooth muscle of the guinea-pig bladder,” British Journal of Pharmacology, vol. 141, no. 1, pp. 183–193, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. M. J. Drake, P. Hedlund, I. J. Harvey, R. K. Pandita, K. E. Andersson, and J. I. Gillespie, “Partial outlet obstruction enhances modular autonomous activity in the isolated rat bladder,” Journal of Urology, vol. 170, no. 1, pp. 276–279, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. W. C. de Groat, “Neurologic basis for the overactive bladder,” Urology, vol. 50, no. 6A, pp. 36–52, 1997. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Kubota, H. Hashitani, N. Shirasawa et al., “Altered distribution of interstitial cells in the guinea pig bladder following bladder outlet obstruction,” Neurourology and Urodynamics, vol. 27, no. 4, pp. 330–340, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. E. P. Frazier, S. L. Peters, A. S. Braverman, M. R. Ruggieri, and M. C. Michel, “Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and β-adrenoceptors,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 377, no. 4–6, pp. 449–462, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. Y. Kubota, S. Kajioka, S. M. Biers, E. Yokota, K. Kohri, and A. F. Brading, “Investigation of the effect of the c-kit inhibitor Glivec on isolated guinea-pig detrusor preparations,” Autonomic Neuroscience, vol. 115, no. 1-2, pp. 64–73, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus