Table of Contents Author Guidelines Submit a Manuscript
Advances in Urology
Volume 2012, Article ID 546917, 11 pages
http://dx.doi.org/10.1155/2012/546917
Review Article

Epigenetic Alterations in Bladder Cancer and Their Potential Clinical Implications

1Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
2Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA

Received 21 March 2012; Accepted 16 May 2012

Academic Editor: Trinity J. Bivalacqua

Copyright © 2012 Han Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. National Cancer Institute, “Bladder Cancer,” 2012, http://www.cancer.gov/cancertopics/types/bladder.
  2. L. Cheng, S. Zhang, G. T. MacLennan, S. R. Williamson, A. Lopez-Beltran, and R. Montironi, “Bladder cancer: translating molecular genetic insights into clinical practice,” Human Pathology, vol. 42, no. 4, pp. 455–458, 2011. View at Google Scholar
  3. R. L. Jacobs, C. T. Lee, and J. E. Montie, “Bladder cancer in 2010 how far have we come?” CA Cancer Journal for Clinicians, vol. 60, no. 4, pp. 244–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. E. M. Wolff, G. Liang, and P. A. Jones, “Mechanisms of disease: genetic and epigenetic alterations that drive bladder cancer,” Nature Clinical Practice Urology, vol. 2, no. 10, pp. 502–510, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. D. S. Kaufman, W. U. Shipley, and A. S. Feldman, “Bladder cancer,” The Lancet, vol. 374, no. 9685, pp. 239–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Ploeg, K. K. H. Aben, and L. A. Kiemeney, “The present and future burden of urinary bladder cancer in the world,” World Journal of Urology, vol. 27, no. 3, pp. 289–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Lee and M. J. Droller, “The natural history of bladder cancer: implications for therapy,” Urologic Clinics of North America, vol. 27, no. 1, pp. 1–13, 2000. View at Google Scholar · View at Scopus
  8. M. A. Knowles, “What we could do now: molecular pathology of bladder cancer,” Journal of Clinical Pathology, vol. 54, no. 4, pp. 215–221, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. B. W. G. Van Rhijn, H. G. Van Der Poel, and T. H. Van Der Kwast, “Urine markers for bladder cancer surveillance: a systematic review,” European Urology, vol. 47, no. 6, pp. 736–748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Smith, D. Weaver, O. Barjenbruch, S. Weinstein, and G. Ross, “Routine excretory urography in follow-up of superficial transitional cell carcinoma of bladder,” Urology, vol. 34, no. 4, pp. 193–196, 1989. View at Google Scholar · View at Scopus
  11. C. J. Bischoff and P. E. Clark, “Bladder cancer,” Current Opinion in Oncology, vol. 21, no. 3, pp. 272–277, 2009. View at Google Scholar
  12. M. F. Botteman, C. L. Pashos, A. Redaelli, B. Laskin, and R. Hauser, “The health economics of bladder cancer: a comprehensive review of the published literature,” PharmacoEconomics, vol. 21, no. 18, pp. 1315–1330, 2003. View at Google Scholar · View at Scopus
  13. L. I. Budman, W. Kassouf, and J. R. Steinberg, “Biomarkers for detection and surveillance of bladder cancer,” Journal of the Canadian Urological Association, vol. 2, no. 3, pp. 212–221, 2008. View at Google Scholar · View at Scopus
  14. E. R. Fearon and P. A. Jones, “Progressing toward a molecular description of colorectal cancer development,” The FASEB Journal, vol. 6, no. 10, pp. 2783–2790, 1992. View at Google Scholar · View at Scopus
  15. C. H. Spruck III, P. F. Ohneseit, M. Gonzalez-Zulueta et al., “Two molecular pathways to transitional cell carcinoma of the bladder,” Cancer Research, vol. 54, no. 3, pp. 784–788, 1994. View at Google Scholar · View at Scopus
  16. C. Billerey, D. Chopin, M. H. Aubriot-Lorton et al., “Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors,” American Journal of Pathology, vol. 158, no. 6, pp. 1955–1959, 2001. View at Google Scholar · View at Scopus
  17. P. J. Goebell and M. A. Knowles, “Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium,” Urologic Oncology, vol. 28, no. 4, pp. 409–428, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. N. P. Munro and M. A. Knowles, “Fibroblast growth factors and their receptors in transitional cell carcinoma,” Journal of Urology, vol. 169, no. 2, pp. 675–682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Knowles, “Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese?” Carcinogenesis, vol. 27, no. 3, pp. 361–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. A. Bakkar, H. Wallerand, F. Radvanyi et al., “FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder,” Cancer Research, vol. 63, no. 23, pp. 8108–8112, 2003. View at Google Scholar · View at Scopus
  21. A. F. Olumi, “A critical analysis of the use of p53 as a marker for management of bladder cancer,” Urologic Clinics of North America, vol. 27, no. 1, pp. 75–82, 2000. View at Google Scholar · View at Scopus
  22. P. A. Jones and S. B. Baylin, “The epigenomics of cancer,” Cell, vol. 128, no. 4, pp. 683–692, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Kouzarides, “Chromatin modifications and their function,” Cell, vol. 128, no. 4, pp. 693–705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. M. Suzuki and A. Bird, “DNA methylation landscapes: provocative insights from epigenomics,” Nature Reviews Genetics, vol. 9, no. 6, pp. 465–476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Bird, “DNA methylation patterns and epigenetic memory,” Genes and Development, vol. 16, no. 1, pp. 6–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Takai and P. A. Jones, “Comprehensive analysis of CpG islands in human chromosomes 21 and 22,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3740–3745, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. P. A. Jones and S. B. Baylin, “The fundamental role of epigenetic events in cancer,” Nature Reviews Genetics, vol. 3, no. 6, pp. 415–428, 2002. View at Google Scholar · View at Scopus
  28. P. A. Jones, “The DNA methylation paradox,” Trends in Genetics, vol. 15, no. 1, pp. 34–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. P. A. Jones and G. Liang, “Rethinking how DNA methylation patterns are maintained,” Nature Reviews Genetics, vol. 10, no. 11, pp. 805–811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. T. R. Hebbes, A. W. Thorne, and C. Crane-Robinson, “A direct link between core histone acetylation and transcriptionally active chromatin,” EMBO Journal, vol. 7, no. 5, pp. 1395–1402, 1988. View at Google Scholar · View at Scopus
  31. G. Liang, J. C. Y. Lin, V. Wei et al., “Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 19, pp. 7357–7362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. T. K. Kelly, D. D. De Carvalho, and P. A. Jones, “Epigenetic modifications as therapeutic targets,” Nature Biotechnology, vol. 28, no. 10, pp. 1069–1078, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Jin, C. Zang, G. Wei et al., “H3.3/H2A.Z double variant-containing nucleosomes mark “nucleosome-free regions” of active promoters and other regulatory regions,” Nature Genetics, vol. 41, no. 8, pp. 941–945, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Li, M. Carey, and J. L. Workman, “The role of chromatin during transcription,” Cell, vol. 128, no. 4, pp. 707–719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Jiang and B. F. Pugh, “Nucleosome positioning and gene regulation: advances through genomics,” Nature Reviews Genetics, vol. 10, no. 3, pp. 161–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Sharma, T. K. Kelly, and P. A. Jones, “Epigenetics in cancer,” Carcinogenesis, vol. 31, no. 1, Article ID bgp220, pp. 27–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Eden, F. Gaudet, A. Waghmare, and R. Jaenisch, “Chromosomal instability and tumors promoted by DNA hypomethylation,” Science, vol. 300, no. 5618, p. 455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Gaudet, J. G. Hodgson, A. Eden et al., “Induction of tumors in mice by genomic hypomethylation,” Science, vol. 300, no. 5618, pp. 489–492, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Maruyama, S. Toyooka, K. O. Toyooka et al., “Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features,” Cancer Research, vol. 61, no. 24, pp. 8659–8663, 2001. View at Google Scholar · View at Scopus
  40. M. W. Y. Chan, L. W. Chan, N. L. S. Tang et al., “Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients,” Clinical Cancer Research, vol. 8, no. 2, pp. 464–470, 2002. View at Google Scholar · View at Scopus
  41. E. Dulaimi, R. G. Uzzo, R. E. Greenberg, T. Al-Saleem, and P. Cairns, “Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel,” Clinical Cancer Research, vol. 10, no. 6, pp. 1887–1893, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. T. L. Kautiainen and P. A. Jones, “DNA methyltransferase levels in tumorigenic and nontumorigenic cells in culture,” Journal of Biological Chemistry, vol. 261, no. 4, pp. 1594–1598, 1986. View at Google Scholar · View at Scopus
  43. C. S. Wilhelm, K. T. Kelsey, R. Butler et al., “Implications of LINE1 methylation for bladder cancer risk in women,” Clinical Cancer Research, vol. 16, no. 5, pp. 1682–1689, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. E. M. Wolff, H. M. Byun, H. F. Han et al., “Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer,” PLoS Genetics, vol. 6, no. 4, Article ID e1000917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Noushmehr, D. J. Weisenberger, K. Diefes et al., “Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma,” Cancer Cell, vol. 17, no. 5, pp. 510–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. E. M. Wolff, Y. Chihara, F. Pan et al., “Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue,” Cancer Research, vol. 70, no. 20, pp. 8169–8178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. T. A. Rauch, X. Zhong, X. Wu et al., “High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 1, pp. 252–257, 2008. View at Google Scholar
  48. J. M. Ordway, M. A. Budiman, Y. Korshunova et al., “Identification of novel high-frequency DNA methylation changes in breast cancer,” PLoS ONE, vol. 2, no. 12, Article ID e1314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. M. G. Friedrich, S. Chandrasoma, K. D. Siegmund et al., “Prognostic relevance of methylation markers in patients with non-muscle invasive bladder carcinoma,” European Journal of Cancer, vol. 41, no. 17, pp. 2769–2778, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. D. P. Slaughter, H. W. Southwick, and W. Smejkal, “Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin,” Cancer, vol. 6, no. 5, pp. 963–968, 1953. View at Google Scholar
  51. M. P. Copper, B. J. Braakhuis, N. de Vries, G. A. van Dongen, J. J. Nauta, and G. B. Snow, “A panel of biomarkers of carcinogenesis of the upper aerodigestive tract as potential intermediate endpoints in chemoprevention trials,” Cancer, vol. 71, no. 3, pp. 825–830, 1993. View at Google Scholar
  52. W. A. Franklin, A. F. Gazdar, J. Haney et al., “Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis,” Journal of Clinical Investigation, vol. 100, no. 8, pp. 2133–2137, 1997. View at Google Scholar · View at Scopus
  53. L. J. Prevo, C. A. Sanchez, P. C. Galipeau, and B. J. Reid, “p53-mutant clones and field effects in Barrett's esophagus,” Cancer Research, vol. 59, no. 19, pp. 4784–4787, 1999. View at Google Scholar · View at Scopus
  54. A. N. Rosenthal, A. Ryan, D. Hopster, and I. J. Jacobs, “Molecular evidence of a common clonal origin and subsequent divergent clonal evolution in vulval intraepithelial neoplasia, vulval squamous cell carcinoma and lymph node metastases,” International Journal of Cancer, vol. 99, no. 4, pp. 549–554, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Y. Chu, C. Y. Shen, H. S. Lee, and H. S. Liu, “Monoclonality and surface lesion-specific microsatellite alterations in premalignant and malignant neoplasia of uterine cervix: a local field effect of genomic instability and clonal evolution,” Genes Chromosomes Cancer, vol. 24, no. 2, pp. 127–134, 1999. View at Google Scholar
  56. S. Jothy, B. Ślesak, A. Harłozińska, J. Lapińska, J. Adamiak, and J. Rabczyński, “Field effect of human colon carcinoma on normal mucosa: relevance of carcinoembryonic antigen expression,” Tumor Biology, vol. 17, no. 1, pp. 58–64, 1996. View at Google Scholar · View at Scopus
  57. R. S. Stern, S. Bolshakov, A. J. Nataraj, and H. N. Ananthaswamy, “p53 mutation in nonmelanoma skin cancers occurring in psoralen ultraviolet A-treated patients: evidence for heterogeneity and field cancerization,” Journal of Investigative Dermatology, vol. 119, no. 2, pp. 522–526, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Hafner, R. Knuechel, R. Stoehr, and A. Hartmann, “Clonality of multifocal urothelial carcinomas: 10 Years of molecular genetic studies,” International Journal of Cancer, vol. 101, no. 1, pp. 1–6, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Takahashi, T. Habuchi, Y. Kakehi et al., “Clonal and chronological genetic analysis of multifocal cancers of the bladder and upper urinary tract,” Cancer Research, vol. 58, no. 24, pp. 5835–5841, 1998. View at Google Scholar · View at Scopus
  60. T. Maekita, K. Nakazawa, M. Mihara et al., “High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk,” Clinical Cancer Research, vol. 12, no. 3, pp. 989–995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Nakajima, T. Maekita, I. Oda et al., “Higher methylation levels in gastric mucosae significantly correlate with higher risk of gastric cancers,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 11, pp. 2317–2321, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Kondo, Y. Kanai, M. Sakamoto, M. Mizokami, R. Ueda, and S. Hirohashi, “Genetic instability and aberrant DNA methylation in chronic hepatitis and cirrhosis—a comprehensive study of loss of heterozygosity and microsatellite instability at 39 loci and DNA hypermethylation on 8 CpG islands in microdissected specimens from patients with hepatocellular carcinoma,” Hepatology, vol. 32, no. 5, pp. 970–979, 2000. View at Google Scholar · View at Scopus
  63. C. J. Hsieh, B. Klump, K. Holzmann, F. Borchard, M. Gregor, and R. Porschen, “Hypermethylation of the p16INK4a promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis,” Cancer Research, vol. 58, no. 17, pp. 3942–3945, 1998. View at Google Scholar · View at Scopus
  64. J. P. J. Issa, N. Ahuja, M. Toyota, M. P. Bronner, and T. A. Brentnall, “Accelerated age-related CpG island methylation in ulcerative colitis,” Cancer Research, vol. 61, no. 9, pp. 3573–3577, 2001. View at Google Scholar · View at Scopus
  65. L. Shen, Y. Kondo, G. L. Rosner et al., “MGMT promoter methylation and field defect in sporadic colorectal cancer,” Journal of the National Cancer Institute, vol. 97, no. 18, pp. 1330–1338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Guo, M. G. House, C. Hooker et al., “Promoter hypermethylation of resected bronchial margins: a field defect of changes?” Clinical Cancer Research, vol. 10, no. 15, pp. 5131–5136, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. P. S. Yan, C. Venkataramu, A. Ibrahim et al., “Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue,” Clinical Cancer Research, vol. 12, no. 22, pp. 6626–6636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Arai, Y. Kanai, S. Ushijima, H. Fujimoto, K. Mukai, and S. Hirohashi, “Regional DNA hypermethylation and DNA methyltransferase (DNMT) 1 protein overexpression in both renal tumors and corresponding nontumorous renal tissues,” International Journal of Cancer, vol. 119, no. 2, pp. 288–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. C. A. Eads, R. V. Lord, S. K. Kurumboor et al., “Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma,” Cancer Research, vol. 60, no. 18, pp. 5021–5026, 2000. View at Google Scholar · View at Scopus
  70. A. P. Mitra and R. J. Cote, “Molecular pathogenesis and diagnostics of bladder cancer,” Annual Review of Pathology, vol. 4, pp. 251–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. P. W. Laird, “The power and the promise of DNA methylation markers,” Nature Reviews Cancer, vol. 3, no. 4, pp. 253–266, 2003. View at Google Scholar · View at Scopus
  72. M. G. Friedrich, D. J. Weisenberger, J. C. Cheng et al., “Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients,” Clinical Cancer Research, vol. 10, no. 22, pp. 7457–7465, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Lintula and K. Hotakainen, “Developing biomarkers for improved diagnosis and treatment outcome monitoring of bladder cancer,” Expert Opinion on Biological Therapy, vol. 10, no. 8, pp. 1169–1180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. V. L. Costa, R. Henrique, S. A. Danielsen et al., “Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples,” Clinical Cancer Research, vol. 16, no. 23, pp. 5842–5851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Reinert, C. Modin, F. M. Castano et al., “Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers,” Clinical Cancer Research, vol. 17, no. 17, pp. 5582–5592, 2011. View at Google Scholar
  76. K. M. Rieger-Christ, A. Mourtzinos, and P. J. Lee, “Identification of fibroblast growth factor receptor 3 mutations in urine sediment DNA samples complements cytology in bladder tumor detection,” Cancer, vol. 98, no. 4, pp. 737–744, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Vinayanuwattikun, V. Sriuranpong, S. Tanasanvimon, P. Chantranuwat, and A. Mutirangura, “Epithelial-specific methylation marker: a potential plasma biomarker in advanced non-small cell lung cancer,” Journal of Thoracic Oncology, vol. 6, no. 11, pp. 1818–1825, 2011. View at Google Scholar
  78. C. Battagli, R. G. Uzzo, E. Dulaimi et al., “Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients,” Cancer Research, vol. 63, no. 24, pp. 8695–8699, 2003. View at Google Scholar · View at Scopus
  79. I. Renard, S. Joniau, B. van Cleynenbreugel et al., “Identification and validation of the methylated TWIST1 and NID2 genes through real-time methylation-specific polymerase chain reaction assays for the noninvasive detection of primary bladder cancer in urine samples,” European Urology, vol. 58, no. 1, pp. 96–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. H. H. Lin, H. L. Ke, S. P. Huang, W. J. Wu, Y. K. Chen, and L. L. Chang, “Increase sensitivity in detecting superficial, low grade bladder cancer by combination analysis of hypermethylation of E-cadherin, p16, p14, RASSF1A genes in urine,” Urologic Oncology, vol. 28, no. 6, pp. 597–602, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. X. Yang, F. Lay, H. Han, and P. A. Jones, “Targeting DNA methylation for epigenetic therapy,” Trends in Pharmacological Sciences, vol. 31, no. 11, pp. 536–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. E. N. Gal-Yam, Y. Saito, G. Egger, and P. A. Jones, “Cancer epigenetics: modifications, screening, and therapy,” Annual Review of Medicine, vol. 59, pp. 267–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. L. H. Li, E. J. Olin, H. H. Buskirk, and L. M. Reineke, “Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia,” Cancer Research, vol. 30, no. 11, pp. 2760–2769, 1970. View at Google Scholar · View at Scopus
  84. C. Stresemann and F. Lyko, “Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine,” International Journal of Cancer, vol. 123, no. 1, pp. 8–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. L. Jackson-Grusby, P. W. Laird, S. N. Magge, B. J. Moeller, and R. Jaenisch, “Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4681–4685, 1997. View at Google Scholar · View at Scopus
  86. P. Pohlmann, L. P. DiLeone, A. I. Cancella et al., “Phase II trial of cisplatin plus decitabine, a new DNA hypomethylating agent, in patients with advanced squamous cell carcinoma of the cervix,” American Journal of Clinical Oncology, vol. 25, no. 5, pp. 496–501, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. W. E. Samlowski, S. A. Leachman, M. Wade et al., “Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation,” Journal of Clinical Oncology, vol. 23, no. 17, pp. 3897–3905, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Billam, M. D. Sobolewski, and N. E. Davidson, “Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells,” Breast Cancer Research and Treatment, vol. 120, no. 3, pp. 581–592, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. C. B. Yoo, J. C. Chuang, H. M. Byun et al., “Long-term epigenetic therapy with oral zebularine has minimal side effects and prevents intestinal tumors in mice,” Cancer Prevention Research, vol. 1, no. 4, pp. 233–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. J. C. Chuang, S. L. Warner, D. Vollmer et al., “S110, a 5-Aza-2-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth,” Molecular Cancer Therapeutics, vol. 9, no. 5, pp. 1443–1450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. N. M. Hahn, P. L. Bonney, and D. Dhawan, “Subcutaneous 5-azacitidine treatment of naturally occurring canine urothelial carcinoma: a novel epigenetic approach to human urothelial carcinoma drug development,” Journal of Urology, vol. 187, no. 1, pp. 302–309, 2012. View at Google Scholar
  92. G. Felsenfeld and M. Groudine, “Controlling the double helix,” Nature, vol. 421, no. 6921, pp. 448–453, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Barski, S. Cuddapah, K. Cui et al., “High-resolution profiling of histone methylations in the human genome,” Cell, vol. 129, no. 4, pp. 823–837, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. X. J. Yang and E. Seto, “HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention,” Oncogene, vol. 26, no. 37, pp. 5310–5318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. C. T. Nguyen, D. J. Weisenberger, M. Velicescu et al., “Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2-deoxycytidine,” Cancer Research, vol. 62, no. 22, pp. 6456–6461, 2002. View at Google Scholar · View at Scopus
  96. A. S. Perry, R. W. G. Watson, M. Lawler, and D. Hollywood, “The epigenome as a therapeutic target in prostate cancer,” Nature Reviews Urology, vol. 7, no. 12, pp. 668–680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Quintás-Cardama, F. P. S. Santos, and G. Garcia-Manero, “Histone deacetylase inhibitors for the treatment of myelodysplastic syndrome and acute myeloid leukemia,” Leukemia, vol. 25, no. 2, pp. 226–235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. A. A. Lane and B. A. Chabner, “Histone deacetylase inhibitors in cancer therapy,” Journal of Clinical Oncology, vol. 27, no. 32, pp. 5459–5468, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. W. Zhou and W. G. Zhu, “The changing face of HDAC inhibitor depsipeptide,” Current Cancer Drug Targets, vol. 9, no. 1, pp. 91–100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. W. S. Xu, R. B. Parmigiani, and P. A. Marks, “Histone deacetylase inhibitors: molecular mechanisms of action,” Oncogene, vol. 26, no. 37, pp. 5541–5552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. C. Mercurio, S. Minucci, and P. G. Pelicci, “Histone deacetylases and epigenetic therapies of hematological malignancies,” Pharmacological Research, vol. 62, no. 1, pp. 18–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Bots and R. W. Johnstone, “Rational combinations using HDAC inhibitors,” Clinical Cancer Research, vol. 15, no. 12, pp. 3970–3977, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. W. K. Kelly, V. M. Richon, O. O'Connor et al., “Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously,” Clinical Cancer Research, vol. 9, no. 10, pp. 3578–3588, 2003. View at Google Scholar · View at Scopus
  104. W. K. Kelly, O. A. O'Connor, L. M. Krug et al., “Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer,” Journal of Clinical Oncology, vol. 23, no. 17, pp. 3923–3931, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. N. Tanji, A. Ozawa, T. Kikugawa et al., “Potential of histone deacetylase inhibitors for bladder cancer treatment,” Expert Review of Anticancer Therapy, vol. 11, no. 6, pp. 959–965, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. M. D. Sachs, M. Ramamurthy, H. Van Der Poel et al., “Histone deacetylase inhibitors upregulate expression of the coxsackie adenovirus receptor (CAR) preferentially in bladder cancer cells,” Cancer Gene Therapy, vol. 11, no. 7, pp. 477–486, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. R. C. Pong, R. Roark, J. Y. Ou et al., “Mechanism of increased coxsackie and adenovirus receptor gene expression and adenovirus uptake by phytoestrogen and histone deacetylase inhibitor in human bladder cancer cells and the potential clinical application,” Cancer Research, vol. 66, no. 17, pp. 8822–8828, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. A. El-Zawahry, P. Lu, S. J. White, and C. Voelkel-Johnson, “In vitro efficacy of AdTRAIL gene therapy of bladder cancer is enhanced by trichostatin A-mediated restoration of CAR expression and downregulation of cFLIP and Bcl-XL,” Cancer Gene Therapy, vol. 13, no. 3, pp. 281–289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. A. J. G. Simpson, O. L. Caballero, A. Jungbluth, Y. T. Chen, and L. J. Old, “Cancer/testis antigens, gametogenesis and cancer,” Nature Reviews Cancer, vol. 5, no. 8, pp. 615–625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. S. N. Akers, K. Odunsi, and A. R. Karpf, “Regulation of cancer germline antigen gene expression: implications for cancer immunotherapy,” Future Oncology, vol. 6, no. 5, pp. 717–732, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. S. J. Adair and K. T. Hogan, “Treatment of ovarian cancer cell lines with 5-aza-2'-deoxycytidine upregulates the expression of cancer-testis antigens and class i major histocompatibility complex-encoded molecules,” Cancer Immunology, Immunotherapy, vol. 58, no. 4, pp. 589–601, 2009. View at Publisher · View at Google Scholar · View at Scopus