Table of Contents Author Guidelines Submit a Manuscript
Advances in Virology
Volume 2011, Article ID 432837, 10 pages
http://dx.doi.org/10.1155/2011/432837
Review Article

XMRV Discovery and Prostate Cancer-Related Research

1Glickman Urological and Kidney Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
2Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
3Taussig Cancer Center, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA

Received 28 March 2011; Accepted 25 May 2011

Academic Editor: Arifa S. Khan

Copyright © 2011 David E. Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. H. Silverman, C. Nguyen, C. J. Weight, and E. A. Klein, “The human retrovirus XMRV in prostate cancer and chronic fatigue syndrome,” Nature Reviews Urology, vol. 7, no. 7, pp. 392–402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. P. Stoye, R. H. Silverman, C. A. Boucher, and S. F. J. Le Grice, “The xenotropic murine leukemia virus-related retrovirus debate continues at first international workshop,” Retrovirology, vol. 7, article 113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. H. G. Klein, R. Y. Dodd, F. B. Hollinger et al., “Xenotropic murine leukemia virus-related virus (XMRV) and blood transfusion: report of the AABB interorganizational XMRV task force,” Transfusion, vol. 51, no. 3, pp. 654–661, 2011. View at Publisher · View at Google Scholar
  4. A. Urisman, R. J. Molinaro, N. Fischer et al., “Identification of a novel gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant,” PLoS Pathogens, vol. 2, no. 3, pp. 0211–0225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Fan, “A new human retrovirus associated with prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 5, pp. 1449–1450, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. P. S. Moore and Y. Chang, “Why do viruses cause cancer? Highlights of the first century of human tumour virology,” Nature Reviews Cancer, vol. 10, no. 12, pp. 878–889, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Das, R. B. Shah, and M. J. Imperiale, “Detection and expression of human BK virus sequences in neoplastic prostate tissues,” Oncogene, vol. 23, no. 42, pp. 7031–7046, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Zambrano, M. Kalantari, A. Simoneau, J. L. Jensen, and L. P. Villarreal, “Detection of human polyomaviruses and papillomaviruses in prostatictissue reveals the prostate as a habitat for multipleviral infections,” Prostate, vol. 53, no. 4, pp. 263–276, 2002. View at Publisher · View at Google Scholar
  9. M. L. Martinez-Fierro, R. J. Leach, L. S. Gomez-Guerra et al., “Identification of viral infections in the prostate and evaluation of their association with cancer,” BMC Cancer, vol. 10, article 326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Samanta, L. Harkins, K. Klemm, W. J. Britt, and C. S. Cobbs, “High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma,” Journal of Urology, vol. 170, no. 3, pp. 998–1002, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Grinstein, M. V. Preciado, P. Gattuso et al., “Demonstration of Epstein-Barr virus in carcinomas of various sites,” Cancer Research, vol. 62, no. 17, pp. 4876–4878, 2002. View at Google Scholar · View at Scopus
  12. J. R. Smith, D. Freije, J. D. Carpten et al., “Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search,” Science, vol. 274, no. 5291, pp. 1371–1374, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. J. D. Carpten, I. Makalowska, C. M. Robbins et al., “A 6-Mb high-resolution physical and transcription map encompassing the hereditary prostate cancer 1 (HPC1) region,” Genomics, vol. 64, no. 1, pp. 1–14, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Carpten, N. Nupponen, S. Isaacs et al., “Germline mutations in the ribonuclease L gene in families showing linkage with HPC1,” Nature Genetics, vol. 30, no. 2, pp. 181–184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Agalliu, S. M. Leanza, L. Smith et al., “Contribution of HPC1 (RNASEL) and HPCX variants to prostate cancer in a founder population,” Prostate, vol. 70, no. 15, pp. 1716–1727, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Rökman, T. Ikonen, E. H. Seppälä et al., “Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer,” American Journal of Human Genetics, vol. 70, no. 5, pp. 1299–1304, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Rennert, D. Bercovich, A. Hubert et al., “A novel founder mutation in the RNASEL gene, 471delAAAG, is associated with prostate cancer in ashkenazi jews,” American Journal of Human Genetics, vol. 71, no. 4, pp. 981–984, 2002. View at Google Scholar · View at Scopus
  18. M. D. Fesinmeyer, E. M. Kwon, R. Fu, E. A. Ostrander, and J. L. Stanford, “Genetic variation in RNASEL and risk for prostate cancer in a population-based case-control study,” Prostate. In press.
  19. S. R. Downing, K. T. Hennessy, M. Abe, J. Manola, D. J. George, and P. W. Kantoff, “Mutations in ribonuclease L gene do not occur at a greater frequency in patients with familial prostate cancer compared with patients with sporadic prostate cancer,” Clinical Prostate Cancer, vol. 2, no. 3, pp. 177–180, 2003. View at Google Scholar · View at Scopus
  20. H. Li and B. C. Tai, “RNASEL gene polymorphisms and the risk of prostate cancer: a meta-analysis,” Clinical Cancer Research, vol. 12, no. 19, pp. 5713–5719, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Maier, J. Haeusler, K. Herkommer et al., “Mutation screening and association study of RNASEL as a prostate cancer susceptibility gene,” British Journal of Cancer, vol. 92, no. 6, pp. 1159–1164, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Wiklund, B. A. Jonsson, A. J. Brookes et al., “Genetic analysis of the RNASEL gene in hereditary, familial, and sporadic prostate cancer,” Clinical Cancer Research, vol. 10, no. 21, pp. 7150–7156, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Chakrabarti, B. K. Jha, and R. H. Silverman, “New insights into the role of RNase L in innate immunity,” Journal of Interferon and Cytokine Research, vol. 31, no. 1, pp. 49–57, 2011. View at Publisher · View at Google Scholar
  24. R. H. Silverman, “Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response,” Journal of Virology, vol. 81, no. 23, pp. 12720–12729, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. K. Maitra and R. H. Silverman, “Regulation of human immunodeficiency virus replication by 2,5- oligoadenylate-dependent RNase L,” Journal of Virology, vol. 72, no. 2, pp. 1146–1152, 1998. View at Google Scholar · View at Scopus
  26. D. Wang, L. Coscoy, M. Zylberberg et al., “Microarray-based detection and genotyping of viral pathogens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15687–15692, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Casey, P. J. Neville, S. J. Plummer et al., “RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases,” Nature Genetics, vol. 32, no. 4, pp. 581–583, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Xiang, Z. Wang, J. Murakami et al., “Effects of RNase L mutations associated with prostate cancer on apoptosis induced by 2,2-Oligoadenylates,” Cancer Research, vol. 63, no. 20, pp. 6795–6801, 2003. View at Google Scholar · View at Scopus
  29. D. Wang, A. Urisman, Y. T. Liu et al., “Viral discovery and sequence recovery using DNA microarrays,” PLoS Biology, vol. 1, no. 2, article e2, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Dong, S. Kim, S. Hong et al., “An infectious retrovirus susceptible to an IFN antiviral pathway from human prostate tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 5, pp. 1655–1660, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Schlaberg, D. J. Choe, K. R. Brown, H. M. Thaker, and I. R. Singh, “XMRV is present in malignant prostatic epithelium and is associated with prostate cancer, especially high-grade tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 38, pp. 16351–16356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. J. Rodriguez and S. P. Goff, “Xenotropic murine leukemia virus-related virus establishes an efficient spreading infection and exhibits enhanced transcriptional activity in prostate carcinoma cells,” Journal of Virology, vol. 84, no. 5, pp. 2556–2562, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. E. C. Knouf, M. J. Metzger, P. S. Mitchell et al., “Multiple integrated copies and high-level production of the human retrovirus XMRV (Xenotropic Murine leukemia virus-Related Virus) from 22Rv1 prostate carcinoma cells,” Journal of Virology, vol. 83, no. 14, pp. 7353–7356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Stieler, C. Schulz, M. Lavanya, M. Aepfelbacher, C. Stocking, and N. Fischer, “Host range and cellular tropism of the human exogenous gammaretrovirus XMRV,” Virology, vol. 399, no. 1, pp. 23–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Kim, N. Kim, B. Dong et al., “Integration site preference of xenotropic murine leukemia virus-related virus, a new human retrovirus associated with prostate cancer,” Journal of Virology, vol. 82, no. 20, pp. 9964–9977, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Fischer, O. Hellwinkel, C. Schulz et al., “Prevalence of human gammaretrovirus XMRV in sporadic prostate cancer,” Journal of Clinical Virology, vol. 43, no. 3, pp. 277–283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. V. C. Lombardi, F. W. Ruscetti, J. D. Gupta et al., “Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome,” Science, vol. 326, no. 5952, pp. 585–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. C. A. Kozak, “The mouse “xenotropic” gammaretroviruses and their XPR1 receptor,” Retrovirology, vol. 7, article 101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Baliji, Q. Liu, and C. A. Kozak, “Common inbred strains of the laboratory mouse that are susceptible to infection by mouse xenotropic gammaretroviruses and the human-derived retrovirus XMRV,” Journal of Virology, vol. 84, no. 24, pp. 12841–12849, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Yan, Q. Liu, K. Wollenberg, C. Martin, A. Buckler-White, and C. A. Kozak, “Evolution of functional and sequence variants of the mammalian XPR1 receptor for mouse xenotropic gammaretroviruses and the human-derived retrovirus XMRV,” Journal of Virology, vol. 84, no. 22, pp. 11970–11980, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Yan, Q. Liu, and C. A. Kozak, “Six host range variants of the xenotropic/polytropic gammaretroviruses define determinants for entry in the XPR1 cell surface receptor,” Retrovirology, vol. 6, article 87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. O. Hohn, H. Krause, P. Barbarotto et al., “Lack of evidence for xenotropic murine leukemia virus-related virus(XMRV) in German prostate cancer patients,” Retrovirology, vol. 6, article 92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Dong and R. H. Silverman, “Androgen stimulates transcription and replication of xenotropic murine leukemia virus-related virus,” Journal of Virology, vol. 84, no. 3, pp. 1648–1651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. H. C. T. Groom, M. W. Yap, R. P. Galão, S. J. D. Neil, and K. N. Bishop, “Susceptibility of xenotropic murine leukemia virus-related virus (XMRV) to retroviral restriction factors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 11, pp. 5166–5171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Paprotka, N. J. Venkatachari, C. Chaipan et al., “Inhibition of xenotropic murine leukemia virus-related virus by APOBEC3 proteins and antiviral drugs,” Journal of Virology, vol. 84, no. 11, pp. 5719–5729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Stieler and N. Fischer, “Apobec 3G efficiently reduces infectivity of the human exogenous gammaretrovirus XMRV,” PLoS ONE, vol. 5, no. 7, Article ID e11738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. H. P. Bogerd, F. Zhang, P. D. Bieniasz, and B. R. Cullen, “Human APOBEC3 proteins can inhibit xenotropic murine leukemia virus-related virus infectivity,” Virology, vol. 410, no. 1, pp. 234–239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. R. A. Smith, G. S. Gottlieb, and A. D. Miller, “Susceptibility of the human retrovirus XMRV to antiretroviral inhibitors,” Retrovirology, vol. 7, article 70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. I. R. Singh, J. E. Gorzynski, D. Drobysheva, L. Bassit, and R. F. Schinazi, “Raltegravir is a potent inhibitor of XMRV, a virus implicated in prostate cancer and chronic fatigue syndrome,” PLoS ONE, vol. 5, no. 4, Article ID e9948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Sakuma, J. M. Tonne, K. A. Squillace et al., “Early events in retrovirus XMRV infection of the wild-derived mouse Mus pahari,” Journal of Virology, vol. 85, no. 3, pp. 1205–1213, 2011. View at Publisher · View at Google Scholar
  51. S. C. Lo, N. Pripuzova, B. Li et al., “Detection of MLV-related virus gene sequences in blood of patients with chronic fatigue syndrome and healthy blood donors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 36, pp. 15874–15879, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. O. Erlwein, S. Kaye, M. O. McClure et al., “Failure to detect the novel retrovirus XMRV in chronic fatigue syndrome,” PLoS ONE, vol. 5, no. 1, Article ID e8519, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. R. S. Arnold, N. V. Makarova, A. O. Osunkoya et al., “XMRV infection in patients with prostate cancer: novel serologic assay and correlation With PCR and FISH,” Urology, vol. 75, no. 4, pp. 755–761, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. B. P. Danielson, G. E. Ayala, and J. T. Kimata, “Detection of xenotropic murine leukemia virus-related virus in normal and tumor tissue of patients from the southern United States with prostate cancer is dependent on specific polymerase chain reaction conditions,” Journal of Infectious Diseases, vol. 202, no. 10, pp. 1470–1477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. A. L. Aloia, K. S. Sfanos, W. B. Isaacs et al., “XMRV: a new virus in prostate cancer?” Cancer Research, vol. 70, no. 24, pp. 10028–10033, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Sakuma, S. Hué, K. A. Squillace et al., “No evidence of XMRV in prostate cancer cohorts in the Midwestern United States,” Retrovirology, vol. 8, article 23, 2011. View at Publisher · View at Google Scholar
  57. X. Qiu, P. Swanson, K. C. Luk et al., “Characterization of antibodies elicited by XMRV infection and development of immunoassays useful for epidemiologic studies,” Retrovirology, vol. 7, article 68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Fischer, C. Schulz, K. Stieler et al., “Xenotropic murine leukemia virus-related gammaretro virus in respiratory tract,” Emerging Infectious Diseases, vol. 16, no. 6, pp. 1000–1002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Hue, E. R. Gray, A. Gall et al., “Disease-associated XMRV sequences are consistent with laboratory contamination,” Retrovirology, vol. 7, article 111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. M. J. Robinson, O. W. Erlwein, S. Kaye et al., “Mouse DNA contamination in human tissue tested for XMRV,” Retrovirology, vol. 7, 108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Sato, R. A. Furuta, and T. Miyazawa, “An endogenous murine leukemia viral genome contaminant in a commercial RT-PCR Kit is amplified using standard primers for XMRV,” Retrovirology, vol. 7, article 110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Oakes, A. K. Tai, O. Cingoz et al., “Contamination of human DNA samples with mouse DNA can lead to false detection of XMRV-like sequences,” Retrovirology, vol. 7, article 109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. N. Onlamoon, J. D. Gupta, P. Sharma et al., “Infection, viral dissemination, and antibody responses of rhesus macaques exposed to the human gammaretrovirus XMRV,” Journal of Virology, vol. 85, no. 9, pp. 4547–4557, 2011. View at Publisher · View at Google Scholar
  64. M. Li, F. Dimaio, D. Zhou et al., “Crystal structure of XMRV protease differs from the structures of other retropepsins,” Nature Structural and Molecular Biology, vol. 18, no. 2, pp. 227–229, 2011. View at Publisher · View at Google Scholar
  65. S. Sakakibara, K. Sakakibara, and G. Tosato, “NF-κB activation stimulates transcription and replication of retrovirus XMRV in human B-lineage and prostate carcinoma cells,” Journal of Virology, vol. 85, no. 7, pp. 3179–3186, 2011. View at Publisher · View at Google Scholar
  66. M. A. Bracho, A. Moya, and E. Barrio, “Contribution of Taq polymerase-induced errors to the estimation of RNA virus diversity,” Journal of General Virology, vol. 79, no. 12, pp. 2921–2928, 1998. View at Google Scholar · View at Scopus
  67. R. M. Sramkoski, T. G. Pretlow, J. M. Giaconia et al., “A new human prostate carcinoma cell line, 22Rv1,” In Vitro Cellular and Developmental Biology, vol. 35, no. 7, pp. 403–409, 1999. View at Google Scholar · View at Scopus
  68. S. Kim, A. Rusmevichientong, B. Dong, R. Remenyi, R. H. Silverman, and S. A. Chow, “Fidelity of target site duplication and sequence preference during integration of Xenotropic murine leukemia virus-related virus,” PLoS ONE, vol. 5, no. 4, Article ID e10255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. J. A. Garson, P. Kellam, and G. J. Towers, “Analysis of XMRV integration sites from human prostate cancer tissues suggests PCR contamination rather than genuine human infection,” Retrovirology, vol. 8, article 13, 2011. View at Publisher · View at Google Scholar
  70. S. Hong, E. A. Klein, J. Das Gupta et al., “Fibrils of prostatic acid phosphatase fragments boost infections with XMRV (Xenotropic Murine leukemia virus-Related Virus), a human retrovirus associated with prostate cancer,” Journal of Virology, vol. 83, no. 14, pp. 6995–7003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Cornelissen, F. Zorgdrager, P. Blom et al., “Lack of detection of XMRV in seminal plasma from HIV-1 infected men in The Netherlands,” PLoS ONE, vol. 5, no. 8, Article ID e12040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. F. D'Arcy, R. Foley, A. Perry et al., “No evidence of XMRV in Irish prostate cancer patients with R462Q mutation.,” European Urology, supplement 7, p. 271, 2008. View at Google Scholar
  73. G. W. Verhaegh, A. S. De Jong, F. P. Smit, S. A. Jannink, W. J.G. Melchers, and J. A. Schalken, “Prevalence of human xenotropic murine leukemia virus-related gammaretrovirus (XMRV) in dutch prostate cancer patients,” Prostate, vol. 71, no. 4, pp. 415–420, 2011. View at Publisher · View at Google Scholar
  74. K. S. Sfanos, J. Sauvageot, H. L. Fedor, J. D. Dick, A. M. De Marzo, and W. B. Isaacs, “A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms,” Prostate, vol. 68, no. 3, pp. 306–320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. W. M. Switzer, H. Jia, H. Zheng, S. Tang, and W. Heneine, “No association of xenotropic murine leukemia virus-related viruse with prostate cancer,” PLoS ONE, vol. 6, article e19065, 2011. View at Google Scholar
  76. J. L. Battini, J. E. J. Rasko, and A. D. Miller, “A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 4, pp. 1385–1390, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. C. S. Tailor, A. Nouri, C. G. Lee, C. Kozak, and D. Kabat, “Cloning and characterization of a cell surface receptor for xenotropic and polytropic marine leukemia viruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 3, pp. 927–932, 1999. View at Google Scholar · View at Scopus
  78. Y. L. Yang, L. Guo, S. Xu et al., “Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1,” Nature Genetics, vol. 21, no. 2, pp. 216–219, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Bhosle, S. Suppiah, R. Molinaro et al., “Evaluation of cellular determinants required for in vitro xenotropic murine leukemia virus-related virus entry into human prostate cancer and noncancerous cells,” Journal of Virology, vol. 84, no. 13, pp. 6288–6296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Münch, E. Rücker, L. Ständker et al., “Semen-derived amyloid fibrils drastically enhance HIV infection,” Cell, vol. 131, no. 6, pp. 1059–1071, 2007. View at Publisher · View at Google Scholar
  81. N. R. Roan, J. Münch, N. Arhel et al., “The cationic properties of SEVI underlie its ability to enhance human immunodeficiency virus infection,” Journal of Virology, vol. 83, no. 1, pp. 73–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Sharma, K. A. Rogers, S. Suppiah et al., “Sexual transmission of XMRV: a potential infection route,” Advances in Virology. In press.
  83. R. N. Douville and J. Hiscott, “The interface between the innate interferon response and expression of host retroviral restriction factors,” Cytokine, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Zhou, J. Paranjape, T. L. Brown et al., “Interferon action and apoptosis are defective in mice devoid of 2',5'-oligoadenylate-dependent RNase L,” EMBO Journal, vol. 16, no. 21, pp. 6355–6363, 1997. View at Publisher · View at Google Scholar · View at Scopus
  85. J. C. Castelli, B. A. Hassel, K. A. Wood et al., “A study of the interferon antiviral mechanism: apoptosis activation by the 2-5A system,” Journal of Experimental Medicine, vol. 186, no. 6, pp. 967–972, 1997. View at Publisher · View at Google Scholar · View at Scopus
  86. S. G. Conticello, C. J. F. Thomas, S. K. Petersen-Mahrt, and M. S. Neuberger, “Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases,” Molecular Biology and Evolution, vol. 22, no. 2, pp. 367–377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. A. M. Sheehy, N. C. Gaddis, J. D. Choi, and M. H. Malim, “Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein,” Nature, vol. 418, no. 6898, pp. 646–650, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. B. R. Cullen, “Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors,” Journal of Virology, vol. 80, no. 3, pp. 1067–1076, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. S. J. D. Neil, T. Zang, and P. D. Bieniasz, “Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu,” Nature, vol. 451, no. 7177, pp. 425–430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Maeda, M. Palmarini, C. Murgia, and H. Fan, “Direct transformation of rodent fibroblasts by jaagsiekte sheep retrovirus DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4449–4454, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. S. K. Wootton, C. L. Halbert, and A. D. Miller, “Sheep retrovirus structural protein induces lung tumours,” Nature, vol. 434, no. 7035, pp. 904–907, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. N. A. Bhowmick, E. G. Neilson, and H. L. Moses, “Stromal fibroblasts in cancer initiation and progression,” Nature, vol. 432, no. 7015, pp. 332–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. T. D. Tlsty and P. W. Hein, “Know thy neighbor: stromal cells can contribute oncogenic signals,” Current Opinion in Genetics and Development, vol. 11, no. 1, pp. 54–59, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. M. J. Metzger, C. J. Holguin, R. Mendoza, and A. D. Miller, “The prostate cancer-associated human retrovirus XMRV lacks direct transforming activity but can induce low rates of transformation in cultured cells,” Journal of Virology, vol. 84, no. 4, pp. 1874–1880, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. M. J. Metzger and A. D. Miller, “Acutely transforming retrovirus expressing Nras generated from HT-1080 fibrosarcoma cells infected with the human retrovirus XMRV,” Journal of Virology, vol. 84, no. 15, pp. 7908–7910, 2010. View at Publisher · View at Google Scholar · View at Scopus