Table of Contents Author Guidelines Submit a Manuscript
Advances in Virology
Volume 2012, Article ID 532723, 10 pages
http://dx.doi.org/10.1155/2012/532723
Review Article

Budding of Enveloped Viruses: Interferon-Induced ISG15—Antivirus Mechanisms Targeting the Release Process

Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Ward 4-065, 303 E. Chicago Avenue, Chicago, IL 60611, USA

Received 23 January 2012; Accepted 12 March 2012

Academic Editor: Trudy Morrison

Copyright © 2012 Eun Joo Seo and Jonathan Leis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. G. Demirov and E. O. Freed, “Retrovirus budding,” Virus Research, vol. 106, no. 2, pp. 87–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Martin-Serrano, T. Zang, and P. D. Bieniasz, “HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress,” Nature Medicine, vol. 7, no. 12, pp. 1313–1319, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Martin-Serrano, “The role of ubiquitin in retroviral egress,” Traffic, vol. 8, no. 10, pp. 1297–1303, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Patnaik, V. Chau, and J. W. Wills, “Ubiquitin is part of the retrovirus budding machinery,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 24, pp. 13069–13074, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. L. Vana, Y. Tang, A. Chen, G. Medina, C. Carter, and J. Leis, “Role of Nedd4 and ubiquitination of rous sarcoma virus Gag in budding of virus-like particles from cells,” Journal of Virology, vol. 78, no. 24, pp. 13943–13953, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Zhadina and P. D. Bieniasz, “Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding,” Plos Pathogens, vol. 6, no. 10, Article ID e1001153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Medina, Y. Zhang, Y. Tang et al., “The functionally exchangeable L domains in RSV and HIV-1 Gag direct particle release through pathways linked by Tsg101,” Traffic, vol. 6, no. 10, pp. 880–894, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Ono and E. O. Freed, “Plasma membrane rafts play a critical role in HIV-1 assembly and release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 24, pp. 13925–13930, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Kikonyogo, F. Bouamr, M. L. Vana et al., “Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11199–11204, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. L. VerPlank, B. Agresta, T. Grassa, A. Kikonyogo, J. Leis, and C. Carter, “Tsg101, the prototype of a class of dominant-negative ubiquitin regulators, binds human immunodeficiency virus type 1 Pr55Gag: the L domain is a determining of binding,” Proceedings National Academy Science USA, vol. 98, pp. 7724–7729, 2001. View at Google Scholar · View at Scopus
  11. K. A. Dilley, D. Gregory, M. C. Johnson, and V. M. Vogt, “An LYPSL late domain in the Gag protein contributes to the efficient release and replication of Rous sarcoma virus,” Journal of Virology, vol. 84, no. 13, pp. 6276–6287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Strack, A. Calistri, S. Craig, E. Popova, and H. G. Göttlinger, “AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding,” Cell, vol. 114, no. 6, pp. 689–699, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. H. G. Gottlinger, T. Dorfman, J. G. Sodroski, and W. A. Haseltine, “Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 8, pp. 3195–3199, 1991. View at Google Scholar · View at Scopus
  14. J. W. Wills, C. E. Cameron, C. B. Wilson, Y. Xiang, R. P. Bennett, and J. Leis, “An assembly domain of the Rous sarcoma virus Gag protein required late in budding,” Journal of Virology, vol. 68, no. 10, pp. 6605–6618, 1994. View at Google Scholar · View at Scopus
  15. Y. Xiang, C. E. Cameron, J. W. Wills, and J. Leis, “Fine mapping and characterization of the Rous sarcoma virus Pr76gaglate assembly domain,” Journal of Virology, vol. 70, no. 8, pp. 5695–5700, 1996. View at Google Scholar · View at Scopus
  16. B. A. Puffer, L. J. Parent, J. W. Wills, and R. C. Montelaro, “Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein,” Journal of Virology, vol. 71, no. 9, pp. 6541–6546, 1997. View at Google Scholar · View at Scopus
  17. G. Medina, A. Pincetic, L. S. Ehrlich et al., “Tsg101 can replace Nedd4 function in ASV Gag release but not membrane targeting,” Virology, vol. 377, no. 1, pp. 30–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. E. Ott, L. V. Coren, R. C. Sowder, J. Adams, and U. Schubert, “Retroviruses have differing requirements for proteasome function in the budding process,” Journal of Virology, vol. 77, no. 6, pp. 3384–3393, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. H.-Y. Chung, E. Moirta, U. Schwedler et al., “Nedd4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains,” Journal Virology, vol. 82, no. 10, pp. 4884–4897, 2008. View at Publisher · View at Google Scholar
  20. Y. Usami, S. Popov, E. Popova, and H. G. Göttlinger, “Efficient and specific rescue of human immunodeficiency virus type 1 budding defects by a Nedd4-like ubiquitin ligase,” Journal of Virology, vol. 82, no. 10, pp. 4898–4907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Weiss, E. Popova, H. Yamanaka, H. Kim, J. Huibregtse, and H. Gottlinger, “Rescue of HIV-1 release by targeting widely divergent Nedd4-type ubiquitin ligases and isolated catalytic hect domains to Gag,” Plos Pathogens, vol. 6, Article ID e1001107, 13 pages, 2010. View at Google Scholar
  22. F. Bouamr, J. A. Melillo, M. Q. Wang et al., “PPPYEPTAP motif is the late domain of human T-Cell leukemia virus Type 1 Gag and mediates its functional interaction with cellular proteins Nedd4 and Tsg101,” Journal of Virology, vol. 77, no. 22, pp. 11882–11895, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Gottwein, J. Bodem, B. Müller, A. Schmechel, H. Zentgraf, and H. G. Kräusslich, “The Mason-Pfizer monkey virus PPPY and PSAP motifs both contribute to virus release,” Journal of Virology, vol. 77, no. 17, pp. 9474–9485, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. J. G. Carlton and J. Martin-Serrano, “Parallels between cytokinesis and retroviral budding: a role for the budding: a role for the ESCRT,” Science, vol. 316, no. 5833, pp. 1908–1912, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. U. K. von Schwedler, M. Stuchell, B. Muller et al., “The protein network of HIV budding,” Cell, vol. 114, pp. 701–713, 2003. View at Google Scholar
  26. M. Babst, “A protein's final ESCRT,” Traffic, vol. 6, no. 1, pp. 2–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. E. Garrus, U. K. von Schwedler, O. W. Pornillos et al., “Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding,” Cell, vol. 107, no. 1, pp. 55–65, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Pincetic, G. Medina, C. Carter, and J. Leis, “Avian sarcoma virus and human immunodeficiency virus, type 1 use different subsets of ESCRT proteins to facilitate the budding process,” Journal of Biological Chemistry, vol. 283, no. 44, pp. 29822–29830, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Pincetic and J. Leis, “The mechanism of budding of retroviruses from cell membranes,” Advances in Virology, vol. 2009, Article ID 623969, 9 pages, 2009. View at Publisher · View at Google Scholar
  30. S. Lata, G. Schoehn, J. Solomons, R. Pires, H. G. Göttlinger, and W. Weissenhorn, “Structure and function of ESCRT-III,” Biochemical Society Transactions, vol. 37, no. 1, pp. 156–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Morita, V. Sandrin, J. McCullough, A. Katsuyama, I. Baci Hamilton, and W. I. Sundquist, “ESCRT-III protein requirements for HIV-1 budding,” Cell Host and Microbe, vol. 9, no. 3, pp. 235–242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Scott, H. Y. Chung, M. Gonciarz-Swiatek et al., “Structural and mechanistic studies of VPS4 proteins,” The EMBO Journal, vol. 24, no. 20, pp. 3658–3669, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. H. T. H. Tsang, J. W. Connell, S. E. Brown, A. Thompson, E. Reid, and C. M. Sanderson, “A systematic analysis of human CHMP protein interactions: additional MIT domain-containing proteins bind to multiple components of the human ESCRT III complex,” Genomics, vol. 88, no. 3, pp. 333–346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Kieffer, J. J. Skalicky, E. Morita et al., “Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding,” Developmental Cell, vol. 15, no. 1, pp. 62–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. D. Stuchell-Brereton, J. J. Skalicky, C. Kieffer, M. A. Karren, S. Ghaffarian, and W. I. Sundquist, “ESCRT-III recognition by VPS4 ATPases,” Nature, vol. 449, no. 7163, pp. 740–744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. M. Ward, M. B. Vaughn, S. L. Shiflett et al., “The role of LIP5 and CHMP5 in multivesicular body formation and HIV-1 budding in mammalian cells,” Journal of Biological Chemistry, vol. 280, no. 11, pp. 10548–10555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Shim, S. A. Merrill, and P. I. Hanson, “Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly,” Molecular Biology of the Cell, vol. 19, no. 6, pp. 2661–2672, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. I. F. Azmi, B. A. Davies, J. Xiao, M. Babst, Z. Xu, and D. J. Katzmann, “ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1,” Developmental Cell, vol. 14, no. 1, pp. 50–61, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Perez, R. C. Craven, and J. C. de la Torre, “The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 22, pp. 12978–12983, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Urata, T. Noda, Y. Kawaoka, H. Yokosawa, and J. Yasuda, “Cellular factors required for Lassa virus budding,” Journal of Virology, vol. 80, no. 8, pp. 4191–4195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Urata, T. Noda, Y. Kawaoka, S. Morikawa, H. Yokosawa, and J. Yasuda, “Interaction of Tsg101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and Tsg101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP,” Journal of Virology, vol. 81, no. 9, pp. 4895–4899, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Lambert, T. Döring, and R. Prange, “Hepatitis B virus maturation is sensitive to functional inhibition of ESCRT-III, Vps4, and γ2-adaptin,” Journal of Virology, vol. 81, no. 17, pp. 9050–9060, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. C. M. Crump, C. Yates, and T. Minson, “Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4,” Journal of Virology, vol. 81, no. 14, pp. 7380–7387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. A. P. Schmitt, G. P. Leser, E. Morita, W. I. Sundquist, and R. A. Lamb, “Evidence for a new viral late-domain core sequence, FPIV, necessary for budding of a paramyxovirus,” Journal of Virology, vol. 79, no. 5, pp. 2988–2997, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Li, P. T. Schmitt, Z. Li, T. S. McCrory, B. He, and A. P. Schmitt, “Mumps virus matrix, fusion, and nucleocapsid proteins cooperate for efficient production of virus-like particles,” Journal of Virology, vol. 83, no. 14, pp. 7261–7272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Irie and R. N. Harty, “L-domain flanking sequences are important for host interactions and efficient budding of vesicular stomatitis virus recombinants,” Journal of Virology, vol. 79, no. 20, pp. 12617–12622, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Wirblich, G. S. Tan, A. Papaneri et al., “PPEY motif within the Rabies Virus (RV) matrix protein is essential for efficient virion release and RV pathogenicity,” Journal of Virology, vol. 82, no. 19, pp. 9730–9738, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. R. N. Harty, M. E. Brown, G. Wang, J. Huibregtse, and F. P. Hayes, “A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13871–13876, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Okumura, P. M. Pitha, and R. N. Harty, “ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 10, pp. 3974–3979, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. L. S. Silvestri, G. Ruthel, G. Kallstrom et al., “Involvement of vacuolar protein sorting pathway in Ebola virus release independent of TSG101 interaction,” Journal of Infectious Diseases, vol. 196, supplement 2, pp. S264–S270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Timmins, G. Schoehn, S. Ricard-Blum et al., “Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4,” Journal of Molecular Biology, vol. 326, no. 2, pp. 493–502, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Ariumi, M. Kuroki, M. Maki et al., “The ESCRT system is required for hepatitis C virus production,” Plos ONE, vol. 6, no. 1, pp. 1–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Corless, C. M. Crump, S. D. C. Griffin, and M. Harris, “Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles,” Journal of General Virology, vol. 91, no. 2, pp. 362–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Pawliczek and C. M. Crump, “Herpes simplex virus type 1 production requires a functional ESCRT-III complex but is independent of TSG101 and ALIX expression,” Journal of Virology, vol. 83, no. 21, pp. 11254–11264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. G. M. Taylor, P. I. Hanson, and M. Kielian, “Ubiquitin depletion and dominant-negative VPS4 inhibit rhabdovirus budding without affecting alphavirus budding,” Journal of Virology, vol. 81, no. 24, pp. 13631–13639, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. A. P. Schmitt, G. P. Leser, D. L. Waning, and R. A. Lamb, “Requirements for budding of paramyxovirus simian virus 5 virus-like particles,” Journal of Virology, vol. 76, no. 8, pp. 3952–3964, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Salditt, S. Koethe, C. Pohl et al., “Measles virus M protein-driven particle production does not involve the endosomal sorting complex required for transport (ESCRT) system,” Journal General Virology, vol. 91, pp. 1464–1472, 2010. View at Google Scholar
  58. T. J. Utley, N. A. Ducharme, V. Varthakavi et al., “Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 29, pp. 10209–10214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Fraile-Ramos, A. Pelchen-Matthews, C. Risco et al., “The ESCRT machinery is not required for human cytomegalovirus envelopment,” Cellular Microbiology, vol. 9, no. 12, pp. 2955–2967, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Tandon, D. P. AuCoin, and E. S. Mocarski, “Human cytomegalovirus exploits ESCRT machinery in the process of virion maturation,” Journal of Virology, vol. 83, no. 20, pp. 10797–10807, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Irie, J. M. Licata, J. P. McGettigan, M. J. Schnell, and R. N. Harty, “Budding of PPxY-containing rhabdoviruses is not dependent on host proteins TSG101 and VPS4A,” Journal of Virology, vol. 78, no. 10, p. 5532, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. B. J. Chen and R. A. Lamb, “Mechanisms for enveloped virus budding: can some viruses do without an ESCRT?” Virology, vol. 372, no. 2, pp. 221–232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. J. C. C. Lai, W. W. L. Chan, F. Kien, J. M. Nicholls, J. S. M. Peiris, and J. M. Garcia, “Formation of virus-like particles from human cell lines exclusively expressing influenza neuraminidase,” Journal of General Virology, vol. 91, no. 9, pp. 2322–2330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. J. S. Rossman, X. Jing, G. P. Leser, and R. A. Lamb, “Influenza virus M2 protein mediates ESCRT-independent membrane scission,” Cell, vol. 142, no. 6, pp. 902–913, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. J. S. Rossman, X. Jing, G. P. Leser, V. Balannik, L. H. Pinto, and R. A. Lamb, “Influenza virus M2 ion channel protein is necessary for filamentous virion formation,” Journal of Virology, vol. 84, no. 10, pp. 5078–5088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. M. A. Yondola, F. Fernandes, A. Belicha-Villanueva et al., “Budding capability of the influenza virus neuraminidase can be modulated by tetherin,” Journal of Virology, vol. 85, no. 6, pp. 2480–2491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Goodbourn, L. Didcock, and R. E. Randall, “Interferons: cell signalling, immune modulation, antiviral responses and virus countermeasures,” Journal of General Virology, vol. 81, no. 10, pp. 2341–2364, 2000. View at Google Scholar · View at Scopus
  68. L. G. Guidotti and F. V. Chisari, “Noncytolytic control of viral infections by the innate and adaptive immune response,” Annual Review of Immunology, vol. 19, pp. 65–91, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Neil and P. Bieniasz, “Human immunodeficiency virus, restriction factors, and interferon,” Journal of Interferon and Cytokine Research, vol. 29, no. 9, pp. 569–580, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. D. Wolf and S. P. Goff, “Host restriction factors blocking retroviral replication,” Annual Review of Genetics, vol. 42, pp. 143–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. J. P. Donahue, M. L. Vetter, N. A. Mukhtar, and R. T. D'Aquila, “The HIV-1 Vif PPLP motif is necessary for human APOBEC3G binding and degradation,” Virology, vol. 377, no. 1, pp. 49–53, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Sebastian and J. Luban, “TRIM5α selectively binds a restriction-sensitive retroviral capsid,” Retrovirology, vol. 2, article 40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Stremlau, M. Perron, M. Lee et al., “Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 14, pp. 5514–5519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Sakuma, T. Noda, S. Urata, Y. Kawaoka, and J. Yasuda, “Inhibition of Lassa and Marburg virus production by tetherin,” Journal Virology, vol. 83, no. 5, pp. 2382–2385, 2009. View at Publisher · View at Google Scholar
  75. S. J. D. Neil, T. Zang, and P. D. Bieniasz, “Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu,” Nature, vol. 451, no. 7177, pp. 425–430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. N. Van Damme, D. Goff, C. Katsura et al., “The interferon-induced protein BST-2 restricts HIV-1 release and is down regulated from the cell surface by the viral Vpu protein,” Cell Host & Microbe, vol. 3, no. 4, pp. 245–252, 2008. View at Google Scholar
  77. B. D. Kuhl, R. D. Sloan, D. A. Donahue, T. Bar-Magen, C. Liang, and M. A. Wainberg, “Tetherin restricts direct cell-to-cell infection of HIV-1,” Retrovirology, vol. 7, article 115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. C. T. Dao and D. E. Zhang, “ISG15: a ubiquitin-like enigma,” Frontiers in Bioscience, vol. 10, no. 2, pp. 2701–2722, 2005. View at Google Scholar · View at Scopus
  79. O. Haller, G. Kochs, and F. Weber, “The interferon response circuit: induction and suppression by pathogenic viruses,” Virology, vol. 344, no. 1, pp. 119–130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. D. P. Bednarik, J. D. Mosca, N. B. K. Raj, and P. M. Pitha, “Inhibition of human immunodeficiency virus (HIV) replication by HIV-trans-activated α2-interferon,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 13, pp. 4958–4962, 1989. View at Google Scholar · View at Scopus
  81. R. N. Harty, P. M. Pitha, and A. Okumura, “Antiviral activity of innate immune protein ISG15,” Journal of Innate Immunity, vol. 1, no. 5, pp. 397–404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. J. Jeon, H. M. Yoo, and C. H. Chung, “ISG15 and immune diseases,” Biochimica et Biophysica Acta, vol. 1802, no. 5, pp. 485–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. Z. Kuang, E. J. Seo, and J. Leis, “Mechanism of inhibition of retrovirus release from cells by interferon-induced gene ISG15,” Journal of Virology, vol. 85, no. 14, pp. 7153–7161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Pincetic, Z. Kuang, E. J. Seo, and J. Leis, “The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process,” Journal of Virology, vol. 84, no. 9, pp. 4725–4736, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Poli, J. M. Orenstein, A. Kinter, T. M. Folks, and A. S. Fauci, “Interferon-α but not AZT suppresses HIV expression in chronically infected cell lines,” Science, vol. 244, no. 4904, pp. 575–577, 1989. View at Google Scholar · View at Scopus
  86. Y. Shirazi and P. M. Pitha, “Alpha interferon inhibits early stages of the human immunodeficiency virus type 1 replication cycle,” Journal of Virology, vol. 66, no. 3, pp. 1321–1328, 1992. View at Google Scholar · View at Scopus
  87. B. Skaug and Z. J. Chen, “Emerging role of ISG15 in antiviral immunity,” Cell, vol. 143, no. 2, pp. 187–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. W. Zou, V. Papov, O. Malakhova et al., “ISG15 modification of ubiquitin E2 Ubc13 disrupts its ability to form thioester bond with ubiquitin,” Biochemical and Biophysical Research Communications, vol. 336, no. 1, pp. 61–68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. G. Chang, X. Z. Yan, Y. Y. Xie et al., “Different roles for two ubiquitin-like domains of ISG15 in protein modification,” Journal of Biological Chemistry, vol. 283, no. 19, pp. 13370–13377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Narasimhan, M. Wang, Z. Fu, J. M. Klein, A. L. Haas, and J. J. P. Kim, “Crystal structure of the interferon-induced ubiquitin-like protein ISG15,” Journal of Biological Chemistry, vol. 280, no. 29, pp. 27356–27365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. K. R. Loeb and A. L. Haas, “The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins,” Journal of Biological Chemistry, vol. 267, no. 11, pp. 7806–7813, 1992. View at Google Scholar · View at Scopus
  92. C. Zhao, C. Denison, J. M. Huibregtse, S. Gygi, and R. M. Krug, “Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 29, pp. 10200–10205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Zhao, T.-Y. Hsiang, R. L. Kuo, and R. M. Krug, “ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 2253–2258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. N. V. Giannakopoulos, E. Arutyunova, C. Lai, D. J. Lenschow, A. L. Haas, and H. W. Virgin, “ISG15 Arg151 and the ISG15-conjugating enzyme UbE1L are important for innate immune control of sindbis virus,” Journal of Virology, vol. 83, no. 4, pp. 1602–1610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. W. Yuan and R. M. Krug, “Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein,” The EMBO Journal, vol. 20, no. 3, pp. 362–371, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. K. L. Kim, N. V. Giannakopoulos, H. W. Virgin, and D. E. Zhang, “Interferon-inducible ubiquitin E2, Ubc8, is a conjugating enzyme for protein ISGylation,” Molecular and Cellular Biology, vol. 24, no. 21, pp. 9592–9600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Zhadina and P. D. Bieniasz, “Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding,” Plos Pathog, vol. 6, no. 10, Article ID e1001153, 2010. View at Publisher · View at Google Scholar
  98. A. Dastur, S. Beaudenon, M. Kelley, R. M. Krug, and J. M. Huibregtse, “Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells,” Journal of Biological Chemistry, vol. 281, no. 7, pp. 4334–4338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. J. J. Y. Wong, Y. F. Pung, N. S. K. Sze, and K. C. Chin, “HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 28, pp. 10735–10740, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. N. V. Giannakopoulos, J. K. Luo, V. Papov et al., “Proteomic identification of proteins conjugated to ISG15 in mouse and human cells,” Biochemical and Biophysical Research Communications, vol. 336, no. 2, pp. 496–506, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. L. Chen, S. Li, and I. McGilvray, “The ISG15/USP18 ubiquitin-like pathway (ISGylation system) in Hepatitis C Virus infection and resistance to interferon therapy,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 10, pp. 1427–1431, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. I. F. Pitha-Rowe and P. M. Pitha, “Viral defense, carcinogenesis and ISG15: novel roles for an old ISG,” Cytokine and Growth Factor Reviews, vol. 18, no. 5-6, pp. 409–417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Okumura, G. Lu, I. Pitha-Rowe, and P. M. Pitha, “Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 5, pp. 1440–1445, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. P. M. Pitha, B. Fernie, F. Maldarelli, T. Hattman, and N. A. Wivel, “Effect of interferon on mouse leukemia virus (MuLV). V. abnormal proteins on virions of Rauscher MuLV produced in the presence of interferon,” Journal General Virology, vol. 46, no. 1, pp. 97–110, 1980. View at Google Scholar
  105. D. J. Lenschow, C. Lai, N. Frias-Staheli et al., “IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 4, pp. 1371–1376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. S. W. Werneke, C. Schilte, A. Rohatgi et al., “ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation,” Plos Pathogens, vol. 7, no. 10, Article ID e1002322, 2011. View at Publisher · View at Google Scholar
  107. D. J. Lenschow, N. V. Giannakopoulos, L. J. Gunn et al., “Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo,” Journal of Virology, vol. 79, no. 22, pp. 13974–13983, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. O. A. Malakhova and D. E. Zhang, “ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response,” Journal of Biological Chemistry, vol. 283, no. 14, pp. 8783–8787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. B. Mangeat, G. Gers-Huber, M. Lehmann, M. Zufferey, J. Luban, and V. Piguet, “HIV-1 Vpu neutralizes the antiviral factor tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation,” PLoS Pathogens, vol. 5, no. 9, Article ID e1000574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. C. Pardieu, R. Vigan, S. J. Wilson et al., “The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin,” Plos pathogens, vol. 6, no. 4, Article ID e1000843, 16 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. G. A. Versteeg, B. G. Hale, S. van Boheemen, T. Wolff, D. J. Lenschow, and A. García-Sastre, “Species-specific antagonism of host ISGylation by the influenza B virus NS1 protein,” Journal of Virology, vol. 84, no. 10, pp. 5423–5430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. W. Yuan, J. M. Aramini, G. T. Montelione, and R. M. Krug, “Structural basis for ubiquitin-like ISG 15 protein binding to the NS1 protein of influenza B virus: a protein-protein interaction function that is not shared by the corresponding N-terminal domain of the NS1 protein of influenza A virus,” Virology, vol. 304, no. 2, pp. 291–301, 2002. View at Publisher · View at Google Scholar · View at Scopus
  113. L. Li, D. Wang, Y. Jiang et al., “Crystal structure of human ISG15 protein in complex with Influenza B Virus NS1B,” Journal Biological Chemistry, vol. 286, no. 35, pp. 30258–30262, 2011. View at Google Scholar
  114. M. D. Arguello and J. Hiscott, “Ub surprised: viral ovarian tumor domain proteases remove ubiquitin and ISG15 conjugates,” Cell Host and Microbe, vol. 2, no. 6, pp. 367–369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. Z. Sun, Y. Li, R. Ransburgh, E. J. Snijder, and Y. Fang, “Nonstructural protein 2 of porcine reproductive and respiratory syndrome virus inhibits the antiviral function of interferon-stimulated gene 15,” Journal Virology, vol. 86, no. 7, pp. 3839–3850, 2012. View at Publisher · View at Google Scholar
  116. S. Guerra, A. Cáceres, K. P. Knobeloch, I. Horak, and M. Esteban, “Vaccinia virus E3 protein prevents the antiviral action of ISG15,” Plos Pathogens, vol. 4, no. 7, Article ID e1000096, 2008. View at Publisher · View at Google Scholar · View at Scopus