Table of Contents Author Guidelines Submit a Manuscript
Advances in Virology
Volume 2012 (2012), Article ID 798526, 15 pages
http://dx.doi.org/10.1155/2012/798526
Review Article

Retargeting of Viruses to Generate Oncolytic Agents

1Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
2Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands

Received 30 June 2011; Revised 25 August 2011; Accepted 26 August 2011

Academic Editor: R. Mark L. Buller

Copyright © 2012 M. H. Verheije and P. J. M. Rottier. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. Lech and S. J. Russell, “Use of attenuated paramyxoviruses for cancer therapy,” Expert Review of Vaccines, vol. 9, no. 11, pp. 1275–1302, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. G. N. Barber, “Vesicular stomatitis virus as an oncolytic vector,” Viral Immunology, vol. 17, no. 4, pp. 516–527, 2004. View at Google Scholar · View at Scopus
  3. C. Thirukkumaran and D. G. Morris, “Oncolytic viral therapy using reovirus,” Methods in Molecular Biology, vol. 542, pp. 607–634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Hesse, D. Kosmides, R. E. Kontermann, and D. M. Nettelbeck, “Tropism modification of adenovirus vectors by peptide ligand insertion into various positions of the adenovirus serotype 41 short-fiber knob domain,” Journal of Virology, vol. 81, no. 6, pp. 2688–2699, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. D. T. Rein, M. Breidenbach, H. Wu et al., “Gene transfer to cervical cancer with fiber-modified adenoviruses,” International Journal of Cancer, vol. 111, no. 5, pp. 698–704, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. N. Belousova, G. Mikheeva, J. Gelovani, and V. Krasnykh, “Modification of adenovirus capsid with a designed protein ligand yields a gene vector targeted to a major molecular marker of cancer,” Journal of Virology, vol. 82, no. 2, pp. 630–637, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. K. L. Poulin, R. M. Lanthier, A. C. Smith et al., “Retargeting of adenovirus vectors through genetic fusion of a single-chain or single-domain antibody to capsid protein IX,” Journal of Virology, vol. 84, no. 19, pp. 10074–10086, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. R. Waehler, S. J. Russell, and D. T. Curiel, “Engineering targeted viral vectors for gene therapy,” Nature Reviews Genetics, vol. 8, no. 8, pp. 573–587, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. J. M. Mathis, M. A. Stoff-Khalili, and D. T. Curiel, “Oncolytic adenoviruses—selective retargeting to tumor cells,” Oncogene, vol. 24, no. 52, pp. 7775–7791, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. J. N. Glasgow, M. Everts, and D. T. Curiel, “Transductional targeting of adenovirus vectors for gene therapy,” Cancer Gene Therapy, vol. 13, no. 9, pp. 830–844, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. K. Hall, M. E. Blair Zajdel, and G. E. Blair, “Unity and diversity in the human adenoviruses: exploiting alternative entry pathways for gene therapy,” Biochemical Journal, vol. 431, no. 3, pp. 321–336, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. T. Nakamura and S. J. Russell, “Oncolytic measles viruses for cancer therapy,” Expert Opinion on Biological Therapy, vol. 4, no. 10, pp. 1685–1692, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A. L. Hammond, R. K. Plemper, J. Zhang, U. Schneider, S. J. Russell, and R. Cattaneo, “Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen,” Journal of Virology, vol. 75, no. 5, pp. 2087–2096, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. E. Galanis, “Therapeutic potential of oncolytic measles virus: promises and challenges,” Clinical Pharmacology and Therapeutics, vol. 88, no. 5, pp. 620–625, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. B. Blechacz and S. J. Russell, “Measles virus as an oncolytic vector platform,” Current Gene Therapy, vol. 8, no. 3, pp. 162–175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. J. Russell and K. W. Peng, “Measles virus for cancer therapy,” Current Topics in Microbiology and Immunology, vol. 330, pp. 213–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Shah and X. O. Breakefield, “HSV amplicon vectors for cancer therapy,” Current Gene Therapy, vol. 6, no. 3, pp. 361–370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Campadelli-Fiume, C. De Giovanni, V. Gatta, P. Nanni, P. L. Lollini, and L. Menotti, “Rethinking herpes simplex virus: the way to oncolytic agents,” Reviews in Medical Virology, vol. 21, no. 4, pp. 213–226, 2011. View at Publisher · View at Google Scholar · View at PubMed
  19. R. Manservigi, R. Argnani, and P. Marconi, “HSV recombinant vectors for gene therapy,” The Open Virology Journal, vol. 4, pp. 123–156, 2010. View at Google Scholar
  20. S. J. Turrell and A. Whitehouse, “Mutation of herpesvirus saimiri ORF51 glycoprotein specifically targets infectivity to hepatocellular carcinoma cell lines,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 785158, 14 pages, 2011. View at Publisher · View at Google Scholar · View at PubMed
  21. K. Park, W. J. Kim, Y. H. Cho et al., “Cancer gene therapy using adeno-associated virus vectors,” Frontiers in Bioscience, vol. 13, no. 7, pp. 2653–2659, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Girod, M. Ried, C. Wobus et al., “Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2,” Nature Medicine, vol. 5, no. 9, pp. 1052–1056, 1999. View at Google Scholar · View at Scopus
  23. M. Grifman, M. Trepel, P. Speece et al., “Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids,” Molecular Therapy, vol. 3, no. 6, pp. 964–975, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. W. Shi, G. S. Arnold, and J. S. Bartlett, “Insertional mutagenesis of the adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors,” Human Gene Therapy, vol. 12, no. 14, pp. 1697–1711, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. W. Shi and J. S. Bartlett, “RGD inclusion in VP3 provides adeno-associated virus type 2 (AAV2)-based vectors with a heparan sulfate-independent cell entry mechanism,” Molecular Therapy, vol. 7, no. 4, pp. 515–525, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Dalba, D. Klatzmann, C. R. Logg, and N. Kasahara, “Beyond oncolytic virotherapy: replication-competent retrovirus vectors for selective and stable transduction of tumors,” Current Gene Therapy, vol. 5, no. 6, pp. 655–667, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. C. K. Tai and N. Kasahara, “Replication-competent retrovirus vectors for cancer gene therapy,” Frontiers in Bioscience, vol. 13, no. 8, pp. 3083–3095, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. J. Russell and F. L. Cosset, “Modifying the host range properties of retroviral vectors,” Journal of Gene Medicine, vol. 1, no. 5, pp. 300–311, 1999. View at Google Scholar · View at Scopus
  29. O. Erlwein, W. Wels, and B. S. Schnierle, “Chimeric ecotropic MLV envelope proteins that carry EGF receptor-specific ligands and the Pseudomonas exotoxin a translocation domain to target gene transfer to human cancer cells,” Virology, vol. 302, no. 2, pp. 333–341, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. M. P. Chadwick, F. J. Morling, F. L. Cosset, and S. J. Russell, “Modification of retroviral tropism by display of IGF-I,” Journal of Molecular Biology, vol. 285, no. 2, pp. 485–494, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. M. Pizzato, E. D. Blair, M. Fling et al., “Evidence for nonspecific adsorption of targeted retrovirus vector particles to cells,” Gene Therapy, vol. 8, no. 14, pp. 1088–1096, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. K. Guse, V. Cerullo, and A. Hemminki, “Oncolytic vaccinia virus for the treatment of cancer,” Expert Opinion on Biological Therapy, vol. 11, no. 5, pp. 595–608, 2011. View at Google Scholar
  33. M. C. Galmiche, L. Rindisbacher, W. Wels, R. Wittek, and F. Buchegger, “Expression of a functional single chain antibody on the surface of extracellular enveloped vaccinia virus as a step towards selective tumour cell targeting,” Journal of General Virology, vol. 78, part 11, pp. 3019–3027, 1997. View at Google Scholar · View at Scopus
  34. S. Paul, M. Geist, K. Dott et al., “Specific tumor cell targeting by a recombinant MVA expressing a functional single chain antibody on the surface of intracellular mature virus (IMV) particles,” Viral Immunology, vol. 20, no. 4, pp. 664–671, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. L. Kuo, G. J. Godeke, M. J. Raamsman, P. S. Masters, and P. J. Rottier, “Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier,” Journal of Virology, vol. 74, no. 3, pp. 1393–1406, 2000. View at Publisher · View at Google Scholar
  36. H. P. Lesch, M. U. Kaikkonen, J. T. Pikkarainen, and S. Yla-Herttuala, “Avidin-biotin technology in targeted therapy,” Expert Opinion on Drug Delivery, vol. 7, no. 5, pp. 551–564, 2010. View at Publisher · View at Google Scholar · View at PubMed
  37. L. Pereboeva, S. Komarova, J. Roth, S. Ponnazhagan, and D. T. Curiel, “Targeting EGFR with metabolically biotinylated fiber-mosaic adenovirus,” Gene Therapy, vol. 14, no. 8, pp. 627–637, 2007. View at Publisher · View at Google Scholar · View at PubMed
  38. J. W. Park, H. Mok, and T. G. Park, “Epidermal growth factor (EGF) receptor targeted delivery of PEGylated adenovirus,” Biochemical and Biophysical Research Communications, vol. 366, no. 3, pp. 769–774, 2008. View at Publisher · View at Google Scholar · View at PubMed
  39. P. Henning, M. K. Magnusson, E. Gunneriusson et al., “Genetic modification of adenovirus 5 tropism by a novel class of ligands based on a three-helix bundle scaffold derived from staphylococcal protein A,” Human Gene Therapy, vol. 13, no. 12, pp. 1427–1439, 2002. View at Publisher · View at Google Scholar · View at PubMed
  40. P. S. Banerjee, E. S. Zuniga, I. Ojima, and I. S. Carrico, “Targeted and armed oncolytic adenovirus via chemoselective modification,” Bioorganic and Medicinal Chemistry Letters, vol. 21, no. 17, pp. 4985–4988, 2011. View at Publisher · View at Google Scholar · View at PubMed
  41. L. Gigout, P. Rebollo, N. Clement et al., “Altering AAV tropism with mosaic viral capsids,” Molecular Therapy, vol. 11, no. 6, pp. 856–865, 2005. View at Publisher · View at Google Scholar · View at PubMed
  42. M. D. Stachler, I. Chen, A. Y. Ting, and J. S. Bartlett, “Site-specific modification of AAV vector particles with biophysical probes and targeting ligands using biotin ligase,” Molecular Therapy, vol. 16, no. 8, pp. 1467–1473, 2008. View at Publisher · View at Google Scholar · View at PubMed
  43. J. I. Quetglas, M. Ruiz-Guillen, A. Aranda, E. Casales, J. Bezunartea, and C. Smerdou, “Alphavirus vectors for cancer therapy,” Virus Research, vol. 153, no. 2, pp. 179–196, 2010. View at Publisher · View at Google Scholar · View at PubMed
  44. K. Ohno, K. Sawai, Y. Lijima, B. Levin, and D. Meruelo, “Cell-specific targeting of sindbis virus vectors displaying IgG-binding domains of protein A,” Nature Biotechnology, vol. 15, no. 8, pp. 763–767, 1997. View at Google Scholar
  45. W. B. Klimstra, J. C. Williams, K. D. Ryman, and H. W. Heidner, “Targeting Sindbis virus-based vectors to Fc receptor-positive cell types,” Virology, vol. 338, no. 1, pp. 9–21, 2005. View at Publisher · View at Google Scholar · View at PubMed
  46. C. K. Tai, C. R. Logg, J. M. Park, W. F. Anderson, M. F. Press, and N. Kasahara, “Antibody-mediated targeting of replication-competent retroviral vectors,” Human Gene Therapy, vol. 14, no. 8, pp. 789–802, 2003. View at Publisher · View at Google Scholar · View at PubMed
  47. J. T. Douglas, B. E. Rogers, M. E. Rosenfeld, S. I. Michael, M. Feng, and D. T. Curiel, “Targeted gene delivery by tropism-modified adenoviral vectors,” Nature Biotechnology, vol. 14, no. 11, pp. 1574–1578, 1996. View at Google Scholar
  48. S. J. Watkins, V. V. Mesyanzhinov, L. P. Kurochkina, and R. E. Hawkins, “The “adenobody” approach to viral targeting: specific and enhanced adenoviral gene delivery,” Gene Therapy, vol. 4, no. 10, pp. 1004–1012, 1997. View at Google Scholar
  49. C. R. Miller, D. J. Buchsbaum, P. N. Reynolds et al., “Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer,” Cancer Research, vol. 58, no. 24, pp. 5738–5748, 1998. View at Google Scholar
  50. B. E. Rogers, J. T. Douglas, C. Ahlem, D. J. Buchsbaum, J. Frincke, and D. T. Curiel, “Use of a novel cross-linking method to modify adenovirus tropism,” Gene Therapy, vol. 4, no. 12, pp. 1387–1392, 1997. View at Google Scholar
  51. C. K. Goldman, B. E. Rogers, J. T. Douglas et al., “Targeted gene delivery to Kaposi's sarcoma cells via the fibroblast growth factor receptor,” Cancer Research, vol. 57, no. 8, pp. 1447–1451, 1997. View at Google Scholar
  52. D. L. Gu, A. M. Gonzalez, M. A. Printz et al., “Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice,” Cancer Research, vol. 59, no. 11, pp. 2608–2614, 1999. View at Google Scholar
  53. T. J. Wickham, D. M. Segal, P. W. Roelvink et al., “Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies,” Journal of Virology, vol. 70, no. 10, pp. 6831–6838, 1996. View at Google Scholar
  54. H. J. Haisma, G. K. Kamps, A. Bouma et al., “Selective targeting of adenovirus to αvβ3 integrins, VEGFR2 and Tie2 endothelial receptors by angio-adenobodies,” International Journal of Pharmaceutics, vol. 391, no. 1-2, pp. 155–161, 2010. View at Publisher · View at Google Scholar · View at PubMed
  55. H. J. Haisma, H. M. Pinedo, A. Rijswijk et al., “Tumor-specific gene transfer via an adenoviral vector targeted to the pan-carcinoma antigen EpCAM,” Gene Therapy, vol. 6, no. 8, pp. 1469–1474, 1999. View at Publisher · View at Google Scholar · View at PubMed
  56. D. A. Heideman, P. J. Snijders, M. E. Craanen et al., “Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-targeted adenoviral vectors,” Cancer Gene Therapy, vol. 8, no. 5, pp. 342–351, 2001. View at Publisher · View at Google Scholar · View at PubMed
  57. D. M. Nettelbeck, A. A. Rivera, J. Kupsch et al., “Retargeting of adenoviral infection to melanoma: combining genetic ablation of native tropism with a recombinant bispecific single-chain diabody (scDb) adapter that binds to fiber knob and HMWMAA,” International Journal of Cancer, vol. 108, no. 1, pp. 136–145, 2004. View at Publisher · View at Google Scholar · View at PubMed
  58. W. Jongmans, K. van den Oudenalder, D. M. Tiemessen et al., “Targeting of adenovirus to human renal cell carcinoma cells,” Urology, vol. 62, no. 3, pp. 559–565, 2003. View at Publisher · View at Google Scholar
  59. B. W. Tillman, T. D. de Gruijl, S. A. Luykx-de Bakker et al., “Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector,” Journal of Immunology, vol. 162, no. 11, pp. 6378–6383, 1999. View at Google Scholar
  60. B. W. Tillman, T. L. Hayes, T. D. DeGruijl, J. T. Douglas, and D. T. Curiel, “Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model,” Cancer Research, vol. 60, no. 19, pp. 5456–5463, 2000. View at Google Scholar
  61. M. Trepel, M. Grifman, M. D. Weitzman, and R. Pasqualini, “Molecular adaptors for vascular-targeted adenoviral gene delivery,” Human Gene Therapy, vol. 11, no. 14, pp. 1971–1981, 2000. View at Publisher · View at Google Scholar · View at PubMed
  62. M. Breidenbach, D. T. Rein, M. Everts et al., “Mesothelin-mediated targeting of adenoviral vectors for ovarian cancer gene therapy,” Gene Therapy, vol. 12, no. 2, pp. 187–193, 2005. View at Publisher · View at Google Scholar · View at PubMed
  63. R. Kraaij, A. L. van Rijswijk, M. H. Oomen, H. J. Haisma, and C. H. Bangma, “Prostate specific membrane antigen (PSMA) is a tissue-specific target for adenoviral transduction of prostate cancer in vitro,” Prostate, vol. 62, no. 3, pp. 253–259, 2005. View at Publisher · View at Google Scholar · View at PubMed
  64. H. J. van Zeeburg, V. W. van Beusechem, A. Huizenga et al., “Adenovirus retargeting to surface expressed antigens on oral mucosa,” Journal of Gene Medicine, vol. 12, no. 4, pp. 365–376, 2010. View at Publisher · View at Google Scholar · View at PubMed
  65. E. Li, S. L. Brown, D. J. von Seggern, G. B. Brown, and G. R. Nemerow, “Signaling antibodies complexed with adenovirus circumvent CAR and integrin interactions and improve gene delivery,” Gene Therapy, vol. 7, no. 18, pp. 1593–1599, 2000. View at Google Scholar
  66. S. K. Yoon, L. Mohr, C. R. O'Riordan, A. Lachapelle, D. Armentano, and J. R. Wands, “Targeting a recombinant adenovirus vector to HCC cells using a bifunctional Fab-antibody conjugate,” Biochemical and Biophysical Research Communications, vol. 272, no. 2, pp. 497–504, 2000. View at Publisher · View at Google Scholar · View at PubMed
  67. I. Dmitriev, E. Kashentseva, B. E. Rogers, V. Krasnykh, and D. T. Curiel, “Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells,” Journal of Virology, vol. 74, no. 15, pp. 6875–6884, 2000. View at Publisher · View at Google Scholar
  68. J. G. Wesseling, P. J. Bosma, V. Krasnykh et al., “Improved gene transfer efficiency to primary and established human pancreatic carcinoma target cells via epidermal growth factor receptor and integrin-targeted adenoviral vectors,” Gene Therapy, vol. 8, no. 13, pp. 969–976, 2001. View at Publisher · View at Google Scholar · View at PubMed
  69. C. Ebbinghaus, A. Al-Jaibaji, E. Operschall et al., “Functional and selective targeting of adenovirus to high-affinity Fcγ receptor I-positive cells by using a bispecific hybrid adapter,” Journal of Virology, vol. 75, no. 1, pp. 480–489, 2001. View at Publisher · View at Google Scholar · View at PubMed
  70. E. A. Kashentseva, T. Seki, D. T. Curiel, and I. P. Dmitriev, “Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain,” Cancer Research, vol. 62, no. 2, pp. 609–616, 2002. View at Google Scholar
  71. H. J. Li, M. Everts, L. Pereboeva et al., “Adenovirus tumor targeting and hepatic untargeting by a coxsackie/adenovirus receptor ectodomain anticarcinoembryonic antigen bispecific adapter,” Cancer Research, vol. 67, no. 11, pp. 5354–5361, 2007. View at Publisher · View at Google Scholar · View at PubMed
  72. N. K. Green, J. Morrison, S. Hale et al., “Retargeting polymer-coated adenovirus to the FGF receptor allows productive infection and mediates efficacy in a peritoneal model of human ovarian cancer,” Journal of Gene Medicine, vol. 10, no. 3, pp. 280–289, 2008. View at Publisher · View at Google Scholar · View at PubMed
  73. J. Moselhy, S. Sarkar, M. C. Chia et al., “Evaluation of copolymers of N-isopropylacrylamide and 2-dimethyl(aminoethyl)methacrylate in nonviral and adenoviral vectors for gene delivery to nasopharyngeal carcinoma,” International Journal of Nanomedicine, vol. 2, no. 3, pp. 461–478, 2007. View at Google Scholar
  74. J. Han, D. Zhao, Z. Zhong, Z. Zhang, T. Gong, and X. Sun, “Combination of adenovirus and cross-linked low molecular weight PEI improves efficiency of gene transduction,” Nanotechnology, vol. 21, no. 10, Article ID 105106, 2010. View at Publisher · View at Google Scholar · View at PubMed
  75. H. Bachtarzi, M. Stevenson, V. Subr, K. Ulbrich, L. W. Seymour, and K. D. Fisher, “Targeting adenovirus gene delivery to activated tumour-associated vasculature via endothelial selectins,” Journal of Controlled Release, vol. 150, no. 2, pp. 196–203, 2011. View at Publisher · View at Google Scholar · View at PubMed
  76. K. D. Fisher, N. K. Green, A. Hale, V. Subr, K. Ulbrich, and L. W. Seymour, “Passive tumour targeting of polymer-coated adenovirus for cancer gene therapy,” Journal of Drug Targeting, vol. 15, no. 7-8, pp. 546–551, 2007. View at Publisher · View at Google Scholar · View at PubMed
  77. M. Stevenson, A. B. Hale, S. J. Hale et al., “Incorporation of a laminin-derived peptide (SIKVAV) on polymer-modified adenovirus permits tumor-specific targeting via α6-integrins,” Cancer Gene Therapy, vol. 14, no. 4, pp. 335–345, 2007. View at Publisher · View at Google Scholar · View at PubMed
  78. J. Lanciotti, A. Song, J. Doukas et al., “Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates,” Molecular Therapy, vol. 8, no. 1, pp. 99–107, 2003. View at Publisher · View at Google Scholar
  79. Y. Eto, J. Q. Gao, F. Sekiguchi et al., “PEGylated adenovirus vectors containing RGD peptides on the tip of PEG show high transduction efficiency and antibody evasion ability,” Journal of Gene Medicine, vol. 7, no. 5, pp. 604–612, 2005. View at Publisher · View at Google Scholar · View at PubMed
  80. J. Q. Gao, Y. Eto, Y. Yoshioka et al., “Effective tumor targeted gene transfer using PEGylated adenovirus vector via systemic administration,” Journal of Controlled Release, vol. 122, no. 1, pp. 102–110, 2007. View at Publisher · View at Google Scholar · View at PubMed
  81. Y. Jung, H. J. Park, P. H. Kim et al., “Retargeting of adenoviral gene delivery via Herceptin-PEG-adenovirus conjugates to breast cancer cells,” Journal of Controlled Release, vol. 123, no. 2, pp. 164–171, 2007. View at Publisher · View at Google Scholar · View at PubMed
  82. C. Y. Chen, S. M. May, and M. A. Barry, “Targeting adenoviruses with factor X-single-chain antibody fusion proteins,” Human Gene Therapy, vol. 21, no. 6, pp. 739–749, 2010. View at Publisher · View at Google Scholar · View at PubMed
  83. J. S. Bartlett, J. Kleinschmidt, R. C. Boucher, and R. J. Samulski, “Targeted adeno-associated virus vector transduction of nonpermissive cells mediated cells by a bispecific F(ab'γ)2 antibody,” Nature Biotechnology, vol. 17, no. 2, pp. 181–186, 1999. View at Google Scholar
  84. K. Nakano, R. Asano, K. Tsumoto et al., “Herpes simplex virus targeting to the EGF receptor by a gD-Specific soluble bridging molecule,” Molecular Therapy, vol. 11, no. 4, pp. 617–626, 2005. View at Publisher · View at Google Scholar · View at PubMed
  85. H. Bian, P. Fournier, R. Moormann, B. Peeters, and V. Schirrmacher, “Selective gene transfer in vitro to tumor cells via recombinant newcastle disease virus,” Cancer Gene Therapy, vol. 12, no. 3, pp. 295–303, 2005. View at Publisher · View at Google Scholar · View at PubMed
  86. H. Bian, H. Wilden, P. Fournier, B. Peeters, and V. Schirrmacher, “In vivo efficacy of systemic tumor targeting of a viral RNA vector with oncolytic properties using a bispecific adapter protein,” International Journal of Oncology, vol. 29, no. 6, pp. 1359–1369, 2006. View at Google Scholar
  87. B. J. Haijema, H. Volders, and P. J. Rottier, “Switching species tropism: an effective way to manipulate the feline coronavirus genome,” Journal of Virology, vol. 77, no. 8, pp. 4528–4538, 2003. View at Publisher · View at Google Scholar
  88. T. Wurdinger, M. H. Verheije, M. Raaben et al., “Targeting non-human coronaviruses to human cancer cells using a bispecific single-chain antibody,” Gene Therapy, vol. 12, no. 18, pp. 1394–1404, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. T. Wurdinger, M. H. Verheije, K. Broen et al., “Soluble receptor-mediated targeting of mouse hepatitis coronavirus to the human epidermal growth factor receptor,” Journal of Virology, vol. 79, no. 24, pp. 15314–15322, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. M. H. Verheije, M. L. Lamfers, T. Wurdinger et al., “Coronavirus genetically redirected to the epidermal growth factor receptor exhibits effective antitumor activity against a malignant glioblastoma,” Journal of Virology, vol. 83, no. 15, pp. 7507–7516, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. A. Hemminki, I. Dmitriev, B. Liu, R. A. Desmond, R. Alemany, and D. T. Curiel, “Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusion molecule,” Cancer Research, vol. 61, no. 17, pp. 6377–6381, 2001. View at Google Scholar · View at Scopus
  92. V. W. van Beusechem, D. C. Mastenbroek, P. B. van den Doel et al., “Conditionally replicative adenovirus expressing a targeting adapter molecule exhibits enhanced oncolytic potency on CAR-deficient tumors,” Gene Therapy, vol. 10, no. 23, pp. 1982–1991, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. J. E. Carette, H. C. Graat, F. H. Schagen et al., “A conditionally replicating adenovirus with strict selectivity in killing cells expressing epidermal growth factor receptor,” Virology, vol. 361, no. 1, pp. 56–67, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. D. A. Einfeld, R. Schroeder, P. W. Roelvink et al., “Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions,” Journal of Virology, vol. 75, no. 23, pp. 11284–11291, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. A. Hemminki, M. Wang, T. Hakkarainen, R. A. Desmond, J. Wahlfors, and D. T. Curiel, “Production of an EGFR targeting molecule from a conditionally replicating adenovirus impairs its oncolytic potential,” Cancer Gene Therapy, vol. 10, no. 8, pp. 583–588, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. J. N. Glasgow, G. Mikheeva, V. Krasnykh, and D. T. Curiel, “A strategy for adenovirus vector targeting with a secreted single chain antibody,” Plos One, vol. 4, no. 12, Article ID e8355, 2009. View at Google Scholar
  97. V. W. Van Beusechem, J. Grill, D. C. Jeroen Mastenbroek et al., “Efficient and selective gene transfer into primary human brain tumors by using single-chain antibody-targeted adenoviral vectors with native tropism abolished,” Journal of Virology, vol. 76, no. 6, pp. 2753–2762, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. S. D. Barker, I. P. Dmitriev, D. M. Nettelbeck et al., “Combined transcriptional and transductional targeting improves the specificity and efficacy of adenoviral gene delivery to ovarian carcinoma,” Gene Therapy, vol. 10, no. 14, pp. 1198–1204, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. M. Everts, S. A. Kim-Park, M. A. Preuss et al., “Selective induction of tumor-associated antigens in murine pulmonary vasculature using double-targeted adenoviral vectors,” Gene Therapy, vol. 12, no. 13, pp. 1042–1048, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. H. J. Li, M. Everts, M. Yamamoto, D. T. Curiel, and H. R. Herschman, “Combined transductional untargeting/retargeting and transcriptional restriction enhances adenovirus gene targeting and therapy for hepatic colorectal cancer tumors,” Cancer Research, vol. 69, no. 2, pp. 554–564, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. P. N. Reynolds, S. A. Nicklin, L. Kaliberova et al., “Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo,” Nature Biotechnology, vol. 19, no. 9, pp. 838–842, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. P. N. Reynolds, K. R. Zinn, V. D. Gavrilyuk et al., “A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo,” Molecular Therapy, vol. 2, no. 6, pp. 562–578, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. M. H. Verheije, T. Wurdinger, V. W. van Beusechem, C. A. de Haan, W. R. Gerritsen, and P. J. Rottier, “Redirecting coronavirus to a nonnative receptor through a virus-encoded targeting adapter,” Journal of Virology, vol. 80, no. 3, pp. 1250–1260, 2006. View at Publisher · View at Google Scholar · View at PubMed
  104. C. A. de Haan, L. van Genne, J. N. Stoop, H. Volders, and P. J. Rottier, “Coronaviruses as vectors: position dependence of foreign gene expression,” Journal of Virology, vol. 77, no. 21, pp. 11312–11323, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. K. J. Kimball, M. A. Preuss, M. N. Barnes et al., “A phase I study of a tropism-modified conditionally replicative adenovirus for recurrent malignant gynecologic diseases,” Clinical Cancer Research, vol. 16, no. 21, pp. 5277–5287, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. D. Koppers-Lalic and R. C. Hoeben, “Non-human viruses developed as therapeutic agent for use in humans,” Reviews in Medical Virology, vol. 21, no. 4, pp. 227–239, 2011. View at Publisher · View at Google Scholar · View at PubMed
  107. N. K. Green, C. W. Herbert, S. J. Hale et al., “Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus,” Gene Therapy, vol. 11, no. 16, pp. 1256–1263, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. H. Nakashima, B. Kaur, and E. A. Chiocca, “Directing systemic oncolytic viral delivery to tumors via carrier cells,” Cytokine and Growth Factor Reviews, vol. 21, no. 2-3, pp. 119–126, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus