Table of Contents Author Guidelines Submit a Manuscript
Advances in Virology
Volume 2016 (2016), Article ID 3605302, 11 pages
http://dx.doi.org/10.1155/2016/3605302
Research Article

A Cross-Study Biomarker Signature of Human Bronchial Epithelial Cells Infected with Respiratory Syncytial Virus

Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil

Received 31 December 2015; Accepted 13 April 2016

Academic Editor: Jay C. Brown

Copyright © 2016 Luiz Gustavo Gardinassi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. J. Anderson, R. A. Parker, and R. L. Strikas, “Association between respiratory syncytial virus outbreaks and lower respiratory tract deaths of infants and young children,” The Journal of Infectious Diseases, vol. 161, no. 4, pp. 640–646, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. A. R. Falsey and E. E. Walsh, “Respiratory syncytial virus infection in adults,” Clinical Microbiology Reviews, vol. 13, no. 3, pp. 371–384, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. V. F. Botosso, P. M. D. Zanotto, M. Ueda et al., “Positive selection results in frequent reversible amino acid replacements in the G protein gene of human respiratory syncytial virus,” PLoS Pathogens, vol. 5, no. 1, Article ID e1000254, 2009. View at Publisher · View at Google Scholar
  4. L. G. A. Gardinassi, P. V. M. Simas, D. E. Gomes et al., “Diversity and adaptation of human respiratory syncytial virus genotypes circulating in two distinct communities: public hospital and day care center,” Viruses, vol. 4, no. 11, pp. 2432–2447, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. L. G. Gardinassi, P. V. Marques Simas, J. B. Salomão et al., “Seasonality of viral respiratory infections in southeast of Brazil: the influence of temperature and air humidity,” Brazilian Journal of Microbiology, vol. 43, no. 1, pp. 98–108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. R. A. Tripp, “Respiratory syncytial virus (RSV) modulation at the virus-host interface affects immune outcome and disease pathogenesis,” Immune Network, vol. 13, no. 5, pp. 163–167, 2013. View at Publisher · View at Google Scholar
  7. T. H. Mogensen, “Pathogen recognition and inflammatory signaling in innate immune defenses,” Clinical Microbiology Reviews, vol. 22, no. 2, pp. 240–273, 2009. View at Publisher · View at Google Scholar
  8. G. Diamond, D. Legarda, and L. K. Ryan, “The innate immune response of the respiratory epithelium,” Immunological Reviews, vol. 173, pp. 27–38, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. R. J. Boyton and P. J. Openshaw, “Pulmonary defences to acute respiratory infection,” British Medical Bulletin, vol. 61, pp. 1–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. K. Mayer, M. Muehmer, J. Mages et al., “Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells,” Journal of Immunology, vol. 178, no. 5, pp. 3134–3142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Martínez, L. Lombardía, B. García-Barreno, O. Domínguez, and J. A. Melero, “Distinct gene subsets are induced at different time points after human respiratory syncytial virus infection of A549 cells,” Journal of General Virology, vol. 88, no. 2, pp. 570–581, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Zhang, B. A. Luxon, A. Casola, R. P. Garofalo, M. Jamaluddin, and A. R. Brasier, “Expression of respiratory syncytial virus-induced chemokine gene networks in lower airway epithelial cells revealed by cDNA microarrays,” Journal of Virology, vol. 75, no. 19, pp. 9044–9058, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. Y.-C. T. Huang, Z. Li, X. Hyseni et al., “Identification of gene biomarkers for respiratory syncytial virus infection in a bronchial epithelial cell line,” Genomic Medicine, vol. 2, no. 3-4, pp. 113–125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Ihaka and R. Gentleman, “R: a language for data analysis and graphics,” Journal of Computational and Graphical Statistics, vol. 5, no. 3, pp. 299–314, 1996. View at Google Scholar · View at Scopus
  15. R. C. Gentleman, V. J. Carey, D. M. Bates et al., “Bioconductor: open software development for computational biology and bioinformatics,” Genome Biology, vol. 5, no. 10, article R80, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Gautier, L. Cope, B. M. Bolstad, and R. A. Irizarry, “Affy—analysis of Affymetrix GeneChip data at the probe level,” Bioinformatics, vol. 20, no. 3, pp. 307–315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. W. E. Johnson, C. Li, and A. Rabinovic, “Adjusting batch effects in microarray expression data using empirical Bayes methods,” Biostatistics, vol. 8, no. 1, pp. 118–127, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  18. J. T. Leek, W. E. Johnson, H. S. Parker, A. E. Jaffe, and J. D. Storey, “The SVA package for removing batch effects and other unwanted variation in high-throughput experiments,” Bioinformatics, vol. 28, no. 6, Article ID bts034, pp. 882–883, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. M. E. Ritchie, B. Phipson, D. Wu et al., “Limma powers differential expression analyses for RNA-sequencing and microarray studies,” Nucleic Acids Research, vol. 43, article e47, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. G. R. Warnes, B. Bolker, L. Bonebakker et al., “gplots: various R programming tools for plotting data,” R Package Version, vol. 2, no. 4, 2009. View at Google Scholar
  21. K. Breuer, A. K. Foroushani, M. R. Laird et al., “InnateDB: Systems biology of innate immunity and beyond—recent updates and continuing curation,” Nucleic Acids Research, vol. 41, no. 1, pp. D1228–D1233, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. S. B. Smith, W. Dampier, A. Tozeren, J. R. Brown, and M. Magid-Slav, “Identification of common biological pathways and drug targets across multiple respiratory viruses based on human host gene expression analysis,” PLoS ONE, vol. 7, no. 3, Article ID e33174, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. M. V. Sitkovsky, D. Lukashev, S. Apasov et al., “Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors,” Annual Review of Immunology, vol. 22, pp. 657–682, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. Schaller, R. Neupane, B. D. Rudd et al., “Notch ligand Delta-like 4 regulates disease pathogenesis during respiratory viral infections by modulating Th2 cytokines,” The Journal of Experimental Medicine, vol. 204, no. 12, pp. 2925–2934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Mejias, B. Dimo, N. M. Suarez et al., “Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection,” PLoS Medicine, vol. 10, no. 11, Article ID e1001549, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. M. J. Gold, P. R. Hiebert, H. Y. Park et al., “Mucosal production of uric acid by airway epithelial cells contributes to particulate matter-induced allergic sensitization,” Mucosal Immunology, vol. 9, pp. 809–820, 2016. View at Publisher · View at Google Scholar
  27. M. Barends, A. Boelen, L. de Rond et al., “Influence of respiratory syncytial virus infection on cytokine and inflammatory responses in allergic mice,” Clinical and Experimental Allergy, vol. 32, no. 3, pp. 463–471, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Li, Y. Wang, C. Zhang et al., “ZNF322, a novel human C2H2 Krüppel-like zinc-finger protein, regulates transcriptional activation in MAPK signaling pathways,” Biochemical and Biophysical Research Communications, vol. 325, no. 4, pp. 1383–1392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. P. K. Mazur, N. Reynoird, P. Khatri et al., “SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer,” Nature, vol. 510, no. 7504, pp. 283–287, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. T. R. Meusel and F. Imani, “Viral induction of inflammatory cytokines in human epithelial cells follows a p38 mitogen-activated protein kinase-dependent but NF-κB-independent pathway,” The Journal of Immunology, vol. 171, no. 7, pp. 3768–3774, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. J. Stewart, S. B. Kulkarni, T. R. Meusel, and F. Imani, “c-Jun N-terminal kinase negatively regulates dsRNA and RSV induction of tumor necrosis factor-α transcription in human epithelial cells,” Journal of Interferon and Cytokine Research, vol. 26, no. 8, pp. 521–533, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. S. H. Lee, R. F. Kalejta, J. Kerry et al., “BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 24, pp. 9575–9580, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. M. K. Tripathy, M. E. M. McManamy, B. D. Burch, N. M. Archin, and D. M. Margolis, “H3K27 demethylation at the proviral promoter sensitizes latent HIV to the effects of vorinostat in ex vivo cultures of resting CD4+ T cells,” Journal of Virology, vol. 89, no. 16, pp. 8392–8405, 2015. View at Publisher · View at Google Scholar
  34. A. P. Oliveira, F. M. Simabuco, R. E. Tamura et al., “Human respiratory syncytial virus N, P and M protein interactions in HEK-293T cells,” Virus Research, vol. 177, no. 1, pp. 108–112, 2013. View at Publisher · View at Google Scholar · View at Scopus