Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2009, Article ID 413175, 12 pages
http://dx.doi.org/10.1155/2009/413175
Research Article

Synthesis and Characterization of New Schiff Bases Derived from N (1)-Substituted Isatin with Dithiooxamide and Their Co(II), Ni(II), Cu(II), Pd(II), and Pt(IV) Complexes

Department of Chemistry, College of Science, University of Baghdad, Jaderiya, P.O. Box 47059 Baghdad, Iraq

Received 13 April 2009; Revised 12 July 2009; Accepted 15 July 2009

Academic Editor: Nick Katsaros

Copyright © 2009 Ahlam J. Abdul-Ghani and Asmaa M. N. Khaleel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Cerhiaro and A. M. D. Ferreira, “Oxindoles and copper complexes with oxindole-derivativesas potential pharmacological agents,” Journal of the Brazilian Chemical Society, vol. 17, no. 8, pp. 1473–1485, 2006. View at Google Scholar
  2. S. N. Pandeya, S. Smitha, M. Jyoti, and S. K. Sridhar, “Biological activities of isatin and its derivatives,” Acta Pharmaceutica, vol. 55, pp. 27–46, 2005. View at Google Scholar · View at Scopus
  3. V. K. Sharma, S. Srivastava, and A. Srivastava, “Novel coordination complexes of the trivalent ruthenium, rhodium and iridium with hydrazones derived from isatin hydrazide and various aldehydes with spectral and biological characterization,” Polish Journal of Chemistry, vol. 80, pp. 387–396, 2006. View at Google Scholar · View at Scopus
  4. V. K. Sharma, A. Srivastava, and S. Srivastava, “Synthetic,structural and antifungal studies of coordination compounds of Ru(III), Rh(III) and Ir(III) with tetradentat Schiff bases,” Journal of the Serbian Chemical Society, vol. 71, no. 8-9, pp. 917–928, 2006. View at Google Scholar
  5. R. M. Abdel Rahman, Z. El Gendy, and M. B. Mahmoud, “Synthesis of some new 3-substituted 1,2,4-triazino-indole derivatives and related compounds of potential antifungal activity,” Indian Journal of Chemistry B, vol. 29, pp. 352–358, 1990. View at Google Scholar · View at Scopus
  6. S. N. Pandeya, A. S. Raja, and J. P. Stables, “Synthesis of isatin semicarbazones as novel anticonvulsants-role of hydrogen bonding,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, no. 3, pp. 266–271, 2002. View at Google Scholar · View at Scopus
  7. T. R. Bal, B. Anand, P. Yogeeswari, and D. Sriram, “Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives,” Bioorganic and Medicinal Chemistry Letters, vol. 15, no. 20, pp. 4451–4455, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. F. M. da Silva, S. J. Garden, and A. C. Pinto, “The chemistry of isatins: a review from 1975 to 1999,” Journal of the Brazilian Chemical Society, vol. 12, no. 3, pp. 273–324, 2001. View at Google Scholar
  9. E. H. El Ashry, E. Ramadan, H. M. Abdel Hamid, and M. Hagar, “Microwave irradiation for accelerating each step for the synthesis of 1,2,4-triazino[5,6-b]indole-3-thiolsand their derivatives from isatin and 5-chloroisatin,” Synlett, no. 4, pp. 723–725, 2004. View at Google Scholar
  10. G. Pelosi, C. Pelizzi, M. B. Ferrari, M.C. Rodríguez-Argüelles, C. Vieito, and J. Sanmartín, “Isatin 3-semicarbazone and 1-methylisatin 3-semicarbazone,” Acta Crystallographica Section C, vol. 61, no. 10, pp. 589–592, 2005. View at Publisher · View at Google Scholar · View at PubMed
  11. D. Sriram, T. R. Bal, and P. Yogeeswari, “Aminopyimidinimo isatin analogues: design of novel non-nucleoside HIV-1 reverse transcriptase inhibitors with broadspectrum chemotherapeutic properties,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 3, pp. 565–577, 2005. View at Google Scholar
  12. K. C. Joshi, P. Chand, and A. Dandia, “Studies in spiroheterocycles—part II-reactions of fluorine containing indole-2,3-diones with 1,2-phenylendiamines & 2,3-diaminopyridine in different media,” Indian Journal of Chemistry B, vol. 23, pp. 743–745, 1984. View at Google Scholar
  13. B. S. Joshi, M. A. Likhate, and N. Viswanathan, “Reaction of N-acylisatins with diamines,” Indian Journal of Chemistry B, vol. 23, pp. 114–116, 1984. View at Google Scholar
  14. P. De Mayo and J. J. Ryan, “The constitutution of isamic acid,” Canadian Journal of Chemistry, vol. 45, no. 15, pp. 2177–2190, 1967. View at Google Scholar
  15. P. J. Werkman, A. Schasfoort, R. H. Wieringa, and A. J. Schouten, “Langmuir-blodgett films of a polymerisable N,N-disubstituted dithiooxamide coordination compound,” Thin Solid Films, vol. 325, pp. 243–250, 1998. View at Google Scholar
  16. J. Muñoz, M. Gallego, and M. Valcárcel, “Speciation of copper by using a new fullerene derivative as a mixed-mode sorbent,” Journal of Analytical Atomic Spectrometry, vol. 21, pp. 1396–1402, 2006. View at Publisher · View at Google Scholar
  17. H. Al-Maydama, A. El-Shekeil, M. A. Khalid, and A. Al-Karbouly, “Thermal degradation behaviour of some polydithiooxamide metal complexes,” Ecletica Quimica, vol. 31, no. 1, pp. 45–52, 2006. View at Publisher · View at Google Scholar
  18. S. Ando, D. Kumaki, J. Nishida et al., “Synthesis, physicalproperties and field-effect transistors of novel thiazolothiazole-phenylene co-oligomers,” Journal of Materials Chemistry, vol. 17, pp. 553–558, 2007. View at Google Scholar
  19. S. K. Agarwal, “Synthesis & characterization of some mixed ligand complexes of Pd(II), Rh(III) and Pt(IV) with carboxylic hydrazones as primary and dithiooxamide as co-ligand,” Asian Journal of Chemistry, vol. 19, no. 4, pp. 2581–2585, 2007. View at Google Scholar
  20. O. V. Mikhailov, “Complexing processes in M(II)-dithiomalonamide-diacetyl triple systems (M= Ni, Cu) in ethanol solution and in a metal(II)hexacyanoferrate(II) gelatin-immobilized matrix materials,” Transition Metal Chemistry, vol. 30, pp. 18–21, 2005. View at Google Scholar
  21. D. D. Perrin and W. L. F. Armarego, Purification of Labortatory Chemicals, Pergamon Press, Oxford, UK, 2nd edition, 1980.
  22. T. L. Jacobs, S. Winstein, G. B. Linden et al., Organic Syntheses Collective, vol. 3, John Wiley & Sons, New York, NY, USA, 1955.
  23. C. Marti, “Novel approach to spiro-pyrrolidine-oxindoles and its applications to the synthesis of (±)–horsfiline and (–)-spirotryprostatin B,” , Ph.D. thesis, Swiss Federal Institute of Technology, Zürich, Switzerland, 2003. View at Google Scholar
  24. A. I. Vogel, Practical Organic Chemistry Qulitative Organic Analysis, Longman, London, UK, 3rd edition, 1972.
  25. E. G. Rochow, Inorganic Synthesis, vol. 218, McGraw-Hill, New York, NY, USA, 4 edition, 1960.
  26. G. Vatsa, O. P. Pandey, and S. K. Sengupta, “Synthesis, spectroscopic and toxicity studies of titanocene chelates of isatin-3-thiosemicarbazones,” Bioinorganic Chemistry and Applications, vol. 3, no. 3-4, pp. 151–160, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. R. A. Kusanur, M. Ghate, and M. V. Kulkarni, “Copper(II), cobalt(II), nickel(II) and zinc(II) complexes of Schiff base derived from benzyl-2,4-dinitrophenylhydrazone with aniline,” Journal of Chemical Sciences, vol. 116, no. 5, pp. 265–270, 2004. View at Google Scholar
  28. A. S. S. H. Elgazwy, H. T. Zaky, M. I. Mohamed, and N. G. Kandile, “2(3H)-furanones as synthons for polyamides of 1,3-diazines and 1,3,5-triazines,” Arkivoc, pp. 162–172, 2006. View at Google Scholar · View at Scopus
  29. H. Hofmans, H. O. Desseyn, and M. A. Herman, “The infrared spectra of complexes with planar dithiooxamides-III.the Ni(II) polymeric complexes,” Spectrochimica Acta A, vol. 38, no. 11, pp. 1213–1220, 1982. View at Google Scholar
  30. H. O. Desseyn and M. A. Herman, “The characterization infra-red bands of primary and secondary thio-amides,” Spectrochimica Acta A, vol. 23, pp. 2457–2463, 1967. View at Google Scholar
  31. R. M. Silverstein and F. X. Webster, Spectrometric Identification of Organic Compounds, John Wiley & Sons, New York, NY, USA, 6th edition, 1997.
  32. J. R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, Prentice-Hall, Englewood Cliffs, NJ, USA, 1965.
  33. E. Labisbal, A. Sousa, A. Castineiras, J. A. Garcia-Vazquez, J. Romero, and D. X. West, “Spectral and structural studies of metal complexes of isatin3-hexamethyleneiminyl thiosemicarbazone prepared electrochemically,” Polyhedron, vol. 19, pp. 1255–1262, 2000. View at Google Scholar
  34. N. M. A. Al-Abidy, “Synthesis, characterization and study of the biological activity of new Mannich- Schiff bases and some metal complexes derived from isatin, 3-amino-1,2,4-triazol and dithiooxamide,” , Ph.D. thesis, University of Baghdad, Baghdad, Iraq, 2006. View at Google Scholar
  35. R. V. Singh, N. Fahmi, and M. K. Biyala, “Coordination behavior and biopotency of N and S/O donor ligands with their palladium(II) and platinum(II) complexes,” Journal of the Iranian Chemical Society, vol. 2, no. 1, pp. 40–46, 2005. View at Google Scholar
  36. K. Nakamoto, Infrared and Ramman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New York, NY, USA, 5th edition, 1997.
  37. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, The Netherlands, 1968.
  38. N. M. A. Al-Abidy, “Synthesis and study of some transition metal complexes with N and S-containing Schiff bases derived from 4-phenyl-5-(P-amino phenyl)-3-mercapto-1,2,4-triazol.,” , M.S. thesis, Baghdad University, Baghdad, Iraq, 1997. View at Google Scholar
  39. J. R. Allan, A. D. Paton, K. Turvey, D. L. Gerrard, and S. Hoey, “Thermal, structural and electrical studies of the chloro complexes of cobalt, nickel, copper and zinc with 2-methylquinoxaline,” Thermochimica Acta, vol. 145, pp. 291–300, 1989. View at Google Scholar · View at Scopus
  40. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, John Wiley & Sons, Singapore, 4th edition, 1980.
  41. B. N. Figgis, Introduction to Ligand Fields, Inter-Science, John Wiley & Sons, New York, NY, USA, 1966.
  42. K. Burger, Coordination Chemistry, Experimental Methods, Butter Worth, London, UK, 1967.
  43. D. Sutton, Electronic Spectra of Transition Metal Complexes, McGraw-Hill, New York, NY, USA, 1st edition, 1968.
  44. M. J. Al-Jeboori, A. J. Abdul-Ghani, and A. J. Al-Karawi, “Synthesis and structural studies of new Mannich base ligands and their metal complexes,” Transition Metal Chemistry, vol. 33, no. 7, pp. 925–930, 2008. View at Publisher · View at Google Scholar
  45. W. J. Geary, “The use of conductivity measurements in organic solvents for the characterization of coordination compounds,” Coordination Chemistry Reviews, vol. 7, pp. 81–122, 1971. View at Google Scholar
  46. C. Duval, Inorganic Thermogravimetric Analysis, Elsevier, London, UK, 2nd edition, 1963.
  47. T. L. Zhang, J. C. Song, J. Guo, G. X. Ma, and K. B. Yu, “Syntheses, crystal structures and thermal stability of Co(II) and Zn(II) complexes with ethyl carbazate,” Zeitschrift für Naturforschung B, vol. 60, pp. 505–510, 2005. View at Google Scholar · View at Scopus
  48. P. A. Antunes, S. T. Breviglieri, G. O. Chierice, and E. T. G. Cavalheiro, “Solution and solid state thermal stability of morpholine dithiocarbamates,” Journal of the Brazilian Chemical Society, vol. 12, no. 4, pp. 473–480, 2001. View at Google Scholar
  49. A. J. Abdul-Ghani and R. A. Majeed, “Preparation and characterization of new metal complexes of Schiff bases contaning a thiazole ring,” Iraqi Journal of Science, vol. 46, no. 1, pp. 59–74, 2005. View at Google Scholar