Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2010, Article ID 307578, 11 pages
http://dx.doi.org/10.1155/2010/307578
Research Article

Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

1School of Chemistry, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK
2CLRC Daresbury Laboratory, Warrington WA4 4AD, UK
3Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK

Received 25 January 2010; Accepted 11 February 2010

Academic Editor: Spyros Perlepes

Copyright © 2010 Yanbo Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Ferric ion binding proteins (Fbps) transport across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III) is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues) together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that binds strongly to Fbp and that a dinuclear centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed.