Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2010, Article ID 803424, 7 pages
Research Article

Synthesis, Crystal Structures, and DNA Binding Properties of Zinc(II) Complexes with 3-Pyridine Aldoxime

1Department of Chemistry, University of Patras, 265 04 Patras, Greece
2Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
3Institute of Materials Science, NCSR “Demokritos”, 153 10 Aghia Paraskevi Attikis, Greece

Received 25 August 2010; Accepted 14 September 2010

Academic Editor: Spyros Perlepes

Copyright © 2010 Konstantis F. Konidaris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The employment of 3-pyridine aldoxime, (3-py)CHNOH, in Z chemistry has afforded two novel compounds: [Zn(acac)2(3-py)CHNOH] (1) [where acac- is the pentane-2,4-dionato(-1) ion] and [Zn2(O2CMe)4(3-py)CHNOH] (2). Complex 1 crystallizes in the monoclinic space group . The Z ion is five-coordinated, surrounded by four oxygen atoms of two acac- moieties and by the pyridyl nitrogen atom of the (3-py)CHNOH ligand. Molecules of 1 interact with the water lattice molecules forming a 2D hydrogen-bonding network. Complex 2 crystallizes in the triclinic space group and displays a dinuclear paddle-wheel structure. Each Z exhibits a perfect square pyramidal geometry, with four carboxylate oxygen atoms at the basal plane and the pyridyl nitrogen of one monodentate (3-py)CHNOH ligand at the apex. DNA mobility shift assays were performed for the determination of the in vitro effect of both complexes on the integrity and the electrophoretic mobility of pDNA.