Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2010, Article ID 820476, 13 pages
http://dx.doi.org/10.1155/2010/820476
Research Article

Synthetic Peptides as Structural Maquettes of Angiotensin-I Converting Enzyme Catalytic Sites

1Department of Pharmacy, University of Patras, GR-26504, Patras, Greece
2Department of Chemistry, University of Patras, GR-26504, Patras, Greece

Received 15 January 2010; Accepted 16 March 2010

Academic Editor: Spyros Perlepes

Copyright © 2010 Zinovia Spyranti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Soffer, “Angiotensin converting enzyme and the regulation of vasoactive peptides,” Annual Review of Biochemistry, vol. 45, pp. 73–94, 1976. View at Google Scholar
  2. E. G. Erdos, “Angiotensin I converting enzyme and the changes in our concepts through the years,” Hypertension, vol. 16, no. 4, pp. 363–370, 1990. View at Google Scholar
  3. H. Gavras, “Angiotensin converting enzyme inhibition and its impact on cardiovascular disease,” Circulation, vol. 81, no. 1, pp. 381–388, 1990. View at Google Scholar
  4. The Heart Outcomes Prevention Evaluation Study Investigators, “Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients,” New England Journal of Medicine, vol. 342, pp. 145–153, 2000. View at Google Scholar
  5. PEACE Trial Investigators, “Angiotensin-converting-enzyme inhibition in stable coronary artery disease,” New England Journal of Medicine, vol. 351, no. 20, pp. 2058–2068, 2004. View at Publisher · View at Google Scholar · View at PubMed
  6. T. Inagami, “The renin-angiotensin system,” Essays in Biochemistry, vol. 28, pp. 147–164, 1994. View at Google Scholar
  7. M. A. Ondetti and D. W. Cushman, “Enzymes of the renin-angiotensin system and their inhibitors,” Annual Review of Biochemistry, vol. 51, pp. 283–308, 1982. View at Google Scholar
  8. A. Roks, H. Buikema, Y. M. Pinto, and W. H. van Gilst, “The renin-angiotensin system and vascular function. The role of angiotensin II, angiotensin-converting enzyme, and alternative conversion of angiotensin I,” Heart and Vessels, vol. 12, pp. 119–124, 1997. View at Google Scholar
  9. P. Bunning, B. Holmquist, and J. F. Riordan, “Substrate specificity and kinetic characteristics of angiotensin converting enzyme,” Biochemistry, vol. 22, no. 1, pp. 103–110, 1983. View at Google Scholar
  10. M. R. W. Ehlers, E. A. Fox, D. J. Strydom, and J. F. Riordan, “Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 20, pp. 7741–7745, 1989. View at Google Scholar
  11. A.-L. Lattion, F. Soubrier, J. Allegrini, C. Hubert, P. Corvol, and F. Alhenc-Gelas, “The testicular transcripts of the angiotensin I-converting enzyme encodes for the ancestral, non-duplicated form of the enzyme,” FEBS Letters, vol. 252, no. 1-2, pp. 99–104, 1989. View at Google Scholar
  12. M. R. W. Ehlers and J. F. Riordan, “Angiotensin-converting enzyme: zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes,” Biochemistry, vol. 30, no. 29, pp. 7118–7126, 1991. View at Google Scholar
  13. M. J. Rieder, S. L. Taylor, A. G. Clark, and D. A. Nickerson, “Sequence variation in the human angiotensin converting enzyme,” Nature Genetics, vol. 22, no. 1, pp. 59–62, 1999. View at Publisher · View at Google Scholar · View at PubMed
  14. N. M. Hooper, “Families of zinc metalloproteases,” FEBS Letters, vol. 354, no. 1, pp. 1–6, 1994. View at Publisher · View at Google Scholar
  15. G. A. Spyroulias, A. S. Galanis, G. Pairas, E. Manessi-Zoupa, and P. Cordopatis, “Structural features of angiotensin-I converting enzyme catalytic sites: conformation studies in solution, homology models and comparison with other zinc metallopeptidases,” Current Topics in Medicinal Chemistry, vol. 4, no. 4, pp. 403–429, 2004. View at Publisher · View at Google Scholar
  16. A. S. Galanis, G. A. Spyroulias, R. Pierattelli et al., “Zinc binding in peptide models of angiotensin-I converting enzyme active sites studied through 1H-NMR and chemical shift perturbation mapping,” Biopolymers, vol. 69, no. 2, pp. 244–252, 2003. View at Publisher · View at Google Scholar · View at PubMed
  17. A. S. Galanis, G. A. Spyroulias, G. Pairas, E. Manessi-Zoupa, and P. Cordopatis, “Solid-phase synthesis and conformational properties of angiotensin converting enzyme catalytic-site peptides: the basis for a structural study on the enzyme-substrate interaction,” Biopolymers, vol. 76, no. 6, pp. 512–526, 2004. View at Publisher · View at Google Scholar · View at PubMed
  18. H. R. Corradi, S. L. U. Schwager, A. T. Nchinda, E. D. Sturrock, and K. R. Acharya, “Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design,” Journal of Molecular Biology, vol. 357, no. 3, pp. 964–974, 2006. View at Publisher · View at Google Scholar · View at PubMed
  19. R. Natesh, S. L. U. Schwager, E. D. Sturrock, and K. R. Acharya, “Crystal structure of the human angiotensin-converting enzyme-lisinopril complex,” Nature, vol. 421, no. 6922, pp. 551–554, 2003. View at Publisher · View at Google Scholar · View at PubMed
  20. G. Bohm, R. Muhr, and R. Jaenicke, “Quantitative analysis of protein far UV circular dichroism spectra by neural networks,” Protein Engineering, vol. 5, no. 3, pp. 191–195, 1992. View at Google Scholar
  21. L. Braunschweiler and R. R. Ernst, “Coherence transfer by isotropic mixing: application to proton correlation spectroscopy,” Journal of Magnetic Resonance, vol. 53, no. 3, pp. 521–528, 1983. View at Google Scholar
  22. A. Bax and D. G. Davis, “MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy,” Journal of Magnetic Resonance, vol. 65, no. 2, pp. 355–360, 1985. View at Google Scholar
  23. A. D. Bax and S. Grzesiek, “Methodological advances in protein NMR,” Accounts of Chemical Research, vol. 26, no. 4, pp. 131–138, 1993. View at Google Scholar
  24. A. G. Palmer III, J. Cavanagh, P. E. Wright, and M. Rance, “Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy,” Journal of Magnetic Resonance, vol. 93, no. 1, pp. 151–170, 1991. View at Google Scholar
  25. D. Marion and K. Wüthrich, “Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins,” Biochemical and Biophysical Research Communications, vol. 113, no. 3, pp. 967–974, 1983. View at Google Scholar
  26. J. Jeener, B. H. Meier, P. Bachmann, and R. R. Ernst, “Investigation of exchange processes by two-dimensional NMR spectroscopy,” Journal of Chemical Physics, vol. 71, no. 11, pp. 4546–4553, 1979. View at Google Scholar
  27. C. Eccles, P. Güntert, M. Billeter, and K. Wüthrich, “Efficient analysis of protein 2D NMR spectra using the software package EASY,” Journal of Biomolecular NMR, vol. 1, no. 2, pp. 111–130, 1991. View at Publisher · View at Google Scholar
  28. P. Güntert, W. Braun, and K. Wüthrich, “Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA,” Journal of Molecular Biology, vol. 217, no. 3, pp. 517–530, 1991. View at Google Scholar
  29. P. Güntert, C. Mumenthaler, and K. Wüthrich, “Torsion angle dynamics for NMR structure calculation with the new program DYANA,” Journal of Molecular Biology, vol. 273, no. 1, pp. 283–298, 1997. View at Publisher · View at Google Scholar · View at PubMed
  30. K. Wüthrich, M. Billeter, and W. Braun, “Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance,” Journal of Molecular Biology, vol. 169, no. 4, pp. 949–961, 1983. View at Google Scholar