Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2010, Article ID 936834, 11 pages
Research Article

Studies of the Antiproliferative Activity of Ruthenium (II) Cyclopentadienyl-Derived Complexes with Nitrogen Coordinated Ligands

1Department de Química Inorgànica, Universitat de Barcelona, Martí y Franquès 1-11, 08028 Barcelona, Spain
2Institut de Biotecnologia i de Biomedecina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
3Centro de Ciências Moleculares e Materiais, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
4Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
5Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Avenue Rovisco Pais, 1049-001 Lisboa, Portugal
6Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Avenue Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal

Received 9 February 2010; Accepted 20 April 2010

Academic Editor: Spyros P. Perlepes

Copyright © 2010 Virtudes Moreno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Four cationic ruthenium(II) complexes with the formula , with -phenyl-1H-tetrazole (TzH) 1, imidazole (ImH) 2, benzo[1,2-b;4,3-] dithio-phen-2-carbonitrile (Bzt) 3, and [5-(2-thiophen-2-yl)-vinyl]-thiophene-2-carbonitrile] (Tvt) 4 were prepared and characterized in view to evaluate their potentialities as antitumor agents. Studies by Circular Dichroism indicated changes in the secondary structure of ct-DNA. Changes in the tertiary structure of pBR322 plasmid DNA were also observed in gel electrophoresis experiment and the images obtained by atomic force microscopy (AFM) suggest strong interaction with pBR322 plasmid DNA; the observed decreasing of the viscosity with time indicates that the complexes do not intercalate between DNA base pairs. Compounds 1, 2, and 3 showed much higher cytotoxicity than the cisplatin against human leukaemia cancer cells (HL-60 cells).