Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2011, Article ID 206316, 8 pages
http://dx.doi.org/10.1155/2011/206316
Research Article

Impact of Vanadium Complexes Treatment on the Oxidative Stress Factors in Wistar Rats Plasma

1Department of Bioorganic Chemistry, Medical College, Faculty of Pharmacy, Jagiellonian University, 9 Medyczna Street, 30-688 Krakow, Poland
2Department of Food Chemistry and Nutrition, Medical College, Faculty of Pharmacy, Jagiellonian University, 9 Medyczna Street, 30-688 Krakow, Poland
3Medical College, Faculty of Pharmacy, Jagiellonian University, 9 Medyczna Street, 30-688 Krakow, Poland
4Faculty of Chemistry, Jagiellonian University, 9 Ingardena Street, Krakow, Poland
5Department of Pharmacodynamics, Medical College, Faculty of Pharmacy, Jagiellonian University, 9 Medyczna Street, 30-688 Krakow, Poland

Received 13 June 2011; Accepted 12 July 2011

Academic Editor: Concepción López

Copyright © 2011 R. Francik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Packer, “The role of antioxidative treatment in diabetes mellitus,” Diabetologia, vol. 36, pp. 1212–1213, 1993. View at Google Scholar
  2. B. Łacka and W. Grzeszczak, “The role of free radicals in the pathogenesis of essential hypertension,” Polskie Archiwum Medycyny Wewnetrznej, vol. 98, no. 1, pp. 67–75, 1997. View at Google Scholar · View at Scopus
  3. G. L. Kelley, G. Allan, and S. Azhar, “High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation,” Endocrinology, vol. 145, no. 2, pp. 548–555, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. K. L. Stanhope and P. J. Havel, “Fructose consumption: Potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance,” Current Opinion in Lipidology, vol. 19, no. 1, pp. 16–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Kinalska and A. Gosiewska, “Plasma ascorbic acid concentration in type I and II diabetic patients with and without microangiopathy,” Diabetes, vol. 40, pp. 474–475, 1991. View at Google Scholar
  6. I. Zwolak and H. Zaporowska, “Preliminary studies on the effect of zinc and selenium on vanadium-induced cytotoxicity in vitro,” Acta Biologica Hungarica, vol. 60, no. 1, pp. 55–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. N. D. Chasteen, “Vanadium-protein interactions,” Metal ions in Biological Systems, vol. 31, pp. 231–247, 1995. View at Google Scholar · View at Scopus
  8. H. Boukhalfa and A. L. Crumbliss, “Chemical aspects of siderophore mediated iron transport,” BioMetals, vol. 15, no. 4, pp. 325–339, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. A. S. Cornish and W. J. Page, “Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii,” Applied and Environmental Microbiology, vol. 66, no. 4, pp. 1580–1586, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. E. J. Baran, “Oxovanadium(IV) and oxovanadium(V) complexes relevant to biological systems,” Journal of Inorganic Biochemistry, vol. 80, no. 1-2, pp. 1–10, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. E. G. Ferrer, P. A. M. Williams, and E. J. Baran, “On the interaction of oxovanadium(IV) with homocysteine,” Biological Trace Element Research, vol. 105, no. 1–3, pp. 53–58, 2005. View at Google Scholar · View at Scopus
  12. P. A. M. Williams, S. B. Etcheverry, D. A. Barrio, and E. J. Baran, “Synthesis, characterization, and biological activity of oxovanadium(IV) complexes with polyalcohols,” Carbohydrate Research, vol. 341, no. 6, pp. 717–724, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. I. G. Macara, K. Kustin, and L. C. Cantley, “Glutathione reduces cytoplasmic vanadate. Mechanism and physiological implications,” Biochimica et Biophysica Acta, vol. 629, no. 1, pp. 95–106, 1980. View at Google Scholar · View at Scopus
  14. I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, no. C, pp. 121–126, 1984. View at Publisher · View at Google Scholar · View at Scopus
  16. R. M. Hochster, M. Kates, and J. H. Quastel, Metabolic Inhibitors: A Comprehensive Treatise, Academic Press, New York, NY, USA, 1972.
  17. D. Giugliano, A. Ceriello, and G. Paolisso, “Oxidative stress and diabetic vascular complications,” Diabetes Care, vol. 19, no. 3, pp. 257–267, 1996. View at Google Scholar · View at Scopus
  18. E. L. Feldman, M. J. Stevens, and D. A. Greene, “Pathogenesis of diabetic neuropathy,” Clinical Neuroscience, vol. 4, no. 6, pp. 365–370, 1997. View at Google Scholar · View at Scopus
  19. D. Ruggiero, M. Lecomte, E. Michoud, M. Lagarde, and N. Wiernsperger, “Involvement of cell-cell interactions in the pathogenesis of diabetic retinopathy,” Diabetes and Metabolism, vol. 23, no. 1, pp. 30–42, 1997. View at Google Scholar · View at Scopus
  20. D. Gossai and C. A. Lau-Cam, “The effects of taurine, taurine homologs and hypotaurine on cell and membrane antioxidative system alterations caused by type 2 diabetes in rat erythrocytes,” Advances in Experimental Medicine and Biology, vol. 643, pp. 359–368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Mukherjee, B. Patra, S. Mahapatra, P. Banerjee, A. Tiwari, and M. Chatterjee, “Vanadium-an element of atypical biological significance,” Toxicology Letters, vol. 150, no. 2, pp. 135–143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Li, J. J. Smee, W. Ding, and D. C. Crans, “Anti-diabetic effects of sodium 4-amino-2,6-dipicolinatodioxovanadium(V) dihydrate in streptozotocin-induced diabetic rats,” Journal of Inorganic Biochemistry, vol. 103, no. 4, pp. 585–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Cupo and W. E. Donaldson, “Chromium and vanadium effects on glucose metabolism and lipid synthesis in the chick,” Poultry science, vol. 66, no. 1, pp. 120–126, 1987. View at Google Scholar · View at Scopus
  24. S. Shrivastava, A. Jadon, and S. Shukla, “Effect of tiron and its combination with nutritional supplements against vanadium intoxication in female albino rats,” Journal of Toxicological Sciences, vol. 32, no. 2, pp. 185–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chemico-Biological Interactions, vol. 160, no. 1, pp. 1–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Russo, O. Olivieri, D. Girelli et al., “Anti-oxidant status and lipid peroxidation in patients with essential hypertension,” Journal of Hypertension, vol. 16, no. 9, pp. 1267–1271, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Perona, G. C. Guidi, A. Piga, R. Cellerino, R. Menna, and M. Zatti, “In vivo and in vitro variations of human erythrocyte glutathione peroxidase activity as result of cells ageing, selenium availability and peroxide activation,” British Journal of Haematology, vol. 39, pp. 399–408, 1978. View at Google Scholar
  28. J. L. Vives Corrons, M. A. Pujades, and D. Colomer, “Increase of enzyme activities following the in vitro peroxidation of normal human red blood cells,” Enzyme, vol. 39, no. 1, pp. 1–7, 1988. View at Google Scholar · View at Scopus
  29. T. Aydemir and K. Kuru, “Purification and partial characterization of catalase from chicken erythrocytes and the effect of various inhibitors on enzyme activity,” Turkish Journal of Chemistry, vol. 27, no. 1, pp. 85–97, 2003. View at Google Scholar · View at Scopus
  30. J. M. Mates, C. Perez-Gomez, and I. Nunez de Castro, “Antioxidant enzymes and human diseases,” Clinical Biochemistry, vol. 32, pp. 595–603, 1999. View at Google Scholar
  31. A. K. Chandra, R. Ghosh, E. A. Chatterje, and R. M. Sarka, “Effects of vanadate on male rat reproductive tract histology, oxidative stress markers and androgenic enzyme activities,” Journal of Inorganic Biochemistry, vol. 101, pp. 944–956, 2007. View at Google Scholar
  32. S. S. Soares, H. Martins, and M. Aureliano, “Vanadium distribution following decavanadate administration,” Archives of Environmental Contamination and Toxicology, vol. 50, pp. 60–64, 2006. View at Google Scholar
  33. C. R. Wheeler, J. A. Salzman, N. M. Elsayed, S. T. Omaye, and D. W. Korte Jr,, “Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity,” Analytical Biochemistry, vol. 184, no. 2, pp. 193–199, 1990. View at Google Scholar · View at Scopus
  34. G. L. King and M. R. Loeken, “Hyperglycemia-induced oxidative stress in diabetic complications,” Histochemistry and Cell Biology, vol. 122, no. 4, pp. 333–338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Urban, J. Antonowicz-Juchniewicz, and R. Andrzejak, “Wanad: zagrożenia i nadzieje,” Medycyna Pracy, vol. 52, no. 2, pp. 125–133, 2001. View at Google Scholar · View at Scopus