Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2011, Article ID 483101, 6 pages
http://dx.doi.org/10.1155/2011/483101
Research Article

Synthesis, Characterization, Theoretical Crystal Structure, and Antibacterial Activities of Some Transition Metal Complexes of the Thiosemicarbazone (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide

1Biotechnology Division, Applied Science Department, University of Technology, Baghdad 10066, Iraq
2Department of Chemical and Processing Engineering, Faculty of Engineering and Built Environment, University of Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
3Chemistry Department, College of Science, Al Koofa University, Al Koofa 54003, Iraq

Received 1 April 2011; Accepted 3 June 2011

Academic Editor: Lorenzo Pellerito

Copyright © 2011 Ahmed A. Al-Amiery et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Problem Statement. In Iraq like most third world countries, attempts discovered new antibiotic drugs derived from thiosemicarbazide and its metal complexes and developed the branch of applied in organic chemistry. Approach. New (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide (L) was synthesized in a good yield by the reaction of pyrrolidone with thiosemicarbazide. Co(II), Ni(II), and Cu(II) complexes of (L) were prepared and characterized by FT-IR, UV/visible spectra, 1HNMR, and CHN analyses. Moreover, charge, bond length, bond angle, twist angle, heat of formation, and steric energy were calculated by using of the ChemOffice program, and the DFT calculations for the complexes were done. The free ligand and its metal complexes were tested in vitro against several microorganisms (Staphylococcus aurous, E. coli, Proteus vulgaris, Pseudomonas, and Klebsiella pneumoniae) to assess their antimicrobial properties. Results. The study shows that these complexes have octahedral geometry; in addition, it has high activity against tested bacteria. Conclusion/Recommendations. Based on the reported results, it may be concluded that ligand acts as bidentate, neutral ligand, coordinating through one of the nitrogen and sulfur atoms.