Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2012 (2012), Article ID 729708, 9 pages
Research Article

Spectroscopic, Thermal, and Antimicrobial Studies of Co(II), Ni(II), Cu(II), and Zn(II) Complexes Derived from Bidentate Ligands Containing N and S Donor Atoms

1Department of Chemistry, Kurukshetra University, Kurukshetra 136 119, India
2Department of Microbiology, Kurukshetra University, Kurukshetra 136 119, India

Received 12 April 2012; Revised 8 October 2012; Accepted 15 October 2012

Academic Editor: Claudio Pettinari

Copyright © 2012 Kiran Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Two new heterocyclic Schiff bases of 4-amino-5-mercapto-3-H/propyl-1,2,4-triazole and 5-nitrofurfuraldehyde [ ] and their cobalt, nickel, copper, and zinc complexes have been synthesized and characterized by elemental analyses, spectral (UV-Vis, IR, 1H NMR, Fluorescence, and ESR) studies, thermal techniques, and magnetic moment measurements. The heterocyclic Schiff bases act as bidentate ligands and coordinate with metal ions through nitrogen and sulphur of the thiol group. The low molar conductance values in DMF indicate that the metal complexes are nonelectrolytes. The magnetic moments and electronic spectral data suggest octahedral geometry for the Co(II), Ni(II), and Zn(II) complexes and square planar for Cu(II) complexes. Two Gram-positive bacteria (Staphylococcus aureus MTCC 96 and Bacillus subtilis MTCC 121), two Gram-negative bacteria (Escherichia coli MTCC 1652 and Pseudomonas aeruginosa MTCC 741), and one yeast, Candida albicans, were used for the evaluation of antimicrobial activity of the newly synthesized compounds.