Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2012, Article ID 729708, 9 pages
http://dx.doi.org/10.1155/2012/729708
Research Article

Spectroscopic, Thermal, and Antimicrobial Studies of Co(II), Ni(II), Cu(II), and Zn(II) Complexes Derived from Bidentate Ligands Containing N and S Donor Atoms

1Department of Chemistry, Kurukshetra University, Kurukshetra 136 119, India
2Department of Microbiology, Kurukshetra University, Kurukshetra 136 119, India

Received 12 April 2012; Revised 8 October 2012; Accepted 15 October 2012

Academic Editor: Claudio Pettinari

Copyright © 2012 Kiran Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Amir and K. Shikha, “Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino) phenyl]acetic acid derivatives,” European Journal of Medicinal Chemistry, vol. 39, no. 6, pp. 535–545, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. A. Al-Soud, N. A. Al-Masoudi, and A. E. R. S. Ferwanah, “Synthesis and properties of new substituted 1,2,4-triazoles: potential antitumor agents,” Bioorganic & Medicinal Chemistry, vol. 11, no. 8, pp. 1701–1708, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. B. S. Holla, B. Veerendra, M. K. Shivananda, and B. Poojary, “Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles,” European Journal of Medicinal Chemistry, vol. 38, no. 7-8, pp. 759–767, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. O. Bekircan, M. Küxük, B. Kahveci, and S. Kolayli, “Convenient synthesis of fused heterocyclic 1,3,5-triazines from some N-Acyl imidates and heterocyclic amines as anticancer and antioxidant agents,” Archiv der Pharmazie, vol. 338, no. 8, pp. 365–372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Singh, Y. Kumar, P. Puri, C. Sharma, and K. R. Aneja, “Antimicrobial, spectral and thermal studies of some transition metal complexes derived from bidentate ligands containing N and S donor atoms,” Phosphorus, Sulfur, and Silicon and the Related Elements, vol. 187, no. 12, pp. 1498–1509, 2012. View at Google Scholar
  6. M. S. Karthikeyan, D. J. Prasad, B. Poojary, K. S. Bhat, B. S. Holla, and N. S. Kumari, “Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety,” Bioorganic & Medicinal Chemistry, vol. 14, no. 22, pp. 7482–7489, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. H. Chohan, S. H. Sumrra, M. H. Youssoufi, and T. B. Hadda, “Metal based biologically active compounds: design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes,” European Journal of Medicinal Chemistry, vol. 45, no. 7, pp. 2739–2747, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. X. S. Cui, J. Chen, K. Y. Chai, J. S. Lee, and Z. S. Quan, “Synthesis and anticonvulsant evaluation of 3-substituted-4-(4-hexyloxyphenyl)-4H-1,2,4-triazoles,” Medicinal Chemistry Research, vol. 18, no. 1, pp. 49–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Chen, X. Y. Sun, K. Y. Chai, J. S. Lee, M. S. Song, and Z. S. Quan, “Synthesis and anticonvulsant evaluation of 4-(4-alkoxylphenyl)-3-ethyl-4H-1,2,4-triazoles as open-chain analogues of 7-alkoxyl-4,5-dihydro[1,2,4]triazolo[4,3-a]quinolines,” Bioorganic & Medicinal Chemistry, vol. 15, no. 21, pp. 6775–6781, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Manfredini, C. B. Vicentini, M. Manfrini et al., “Pyrazolo-triazoles as light activable dna cleaving agents,” Bioorganic & Medicinal Chemistry, vol. 8, no. 9, pp. 2343–2346, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. J. G. Haasnoot, “Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands,” Coordination Chemistry Reviews, vol. 200–202, pp. 131–185, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. El-Sayed and O. A. Abd Allah, “Synthetic and biological studies on coumarin hydrazone derivatives,” Phosphorus, Sulfur and Silicon and Related Elements, vol. 170, no. 1, pp. 75–86, 2001. View at Google Scholar · View at Scopus
  13. O. Bekircan and H. Bektas, “Synthesis of new bis-1,2,4-triazole derivatives,” Molecules, vol. 11, no. 6, pp. 469–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Singh, D. P. Singh, M. S. Barwa, P. Tyagi, and Y. Mirza, “Antibacterial Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff bases derived from fluorobenzaldehyde and triazoles,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 21, no. 5, pp. 557–562, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Singh, D. P. Singh, M. S. Barwa, P. Tyagi, and Y. Mirza, “Some bivalent metal complexes of Schiff bases containing N and S donor atoms,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 21, no. 6, pp. 749–755, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Garcia, P. J. Van Koningsbruggen, E. Codjovi, R. Lapouyade, O. Kahn, and L. Rabardel, “Non-classical FeII spin-crossover behaviour leading to an unprecedented extremely large apparent thermal hysteresis of 270 K: application for displays,” Journal of Materials Chemistry, vol. 7, no. 6, pp. 857–858, 1997. View at Google Scholar · View at Scopus
  17. O. Kahn and C. J. Martinez, “Spin-transition polymers: from molecular materials toward memory devices,” Science, vol. 279, no. 5347, pp. 44–48, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Bala, R. P. Gupta, M. L. Sachdeva, A. Singh, and H. K. Pujari, “Heterocyclic systems containing bridgehead nitrogen atom: part III—synthesis of s-Triazolo [3,4-b][1,3,4] thiadiazine, s-triazolo-[3,4-b][1,3,4]thiadiazino[6,7-b] quinoxaline & as-triazino-[3,4-b] [1,3,4] thiadiazines,” Indian Journal of Chemistry, vol. 16, pp. 481–483, 1978. View at Google Scholar
  19. A. I. Vogel, A Text Book of Quantitative Chemical Analysis, Addison Wesley, London, UK, 1999.
  20. I. Ahmad and A. Z. Beg, “Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens,” Journal of Ethnopharmacology, vol. 74, no. 2, pp. 113–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Andrews, “Determination of minimum inhibitory concentrations,” Journal of Antimicrobial Chemotherapy, vol. 48, no. 1, pp. 5–16, 2001. View at Google Scholar · View at Scopus
  22. M. I. Okeke, C. U. Iroegbu, E. N. Eze, A. S. Okoli, and C. O. Esimone, “Evaluation of extracts of the root of Landolphia owerrience for antibacterial activity,” Journal of Ethnopharmacology, vol. 78, no. 2-3, pp. 119–127, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. W. J. Geary, “The use of conductivity measurements in organic solvents for the characterisation of coordination compounds,” Coordination Chemistry Reviews, vol. 7, no. 1, pp. 81–122, 1971. View at Google Scholar · View at Scopus
  24. K. Singh, Y. Kumar, P. Puri, C. Sharma, and K. R. Aneja, “Metal based biologically active compounds: synthesis, spectral and antimicrobial studies of cobalt, nickel, copper and zinc complexes of triazole derived Schiff bases,” Bioinorganic Chemistry and Applications, vol. 2011, Article ID 901716, 10 pages, 2011. View at Publisher · View at Google Scholar
  25. K. Singh, Y. Kumar, P. Puri, M. Kumar, and C. Sharma, “Cobalt, nickel, copper and zinc complexes with 1, 3-diphenyl-1H-pyrazole-4-carboxaldehyde Schiff bases: antimicrobial, spectroscopic, thermal and fluorescence studies,” European Journal of Medicinal Chemistry, vol. 52, pp. 313–321, 2012. View at Google Scholar
  26. S. A. Patil, S. N. Unki, A. D. Kulkarni, V. H. Naik, and P. S. Badami, “Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies,” Spectrochimica Acta A, vol. 79, no. 5, pp. 1128–1136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Singh, Y. Kumar, P. Puri, C. Sharma, and K. R. Aneja, “Synthesis, spectroscopic, thermal and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff base derived from 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine,” Medicinal Chemistry Research, vol. 21, pp. 1708–1716, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. A. K. Singh, O. P. Pandey, and S. K. Sengupta, “Synthesis, spectral characterization and biological activity of zinc(II) complexes with 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole Schiff bases,” Spectrochimica Acta A, vol. 85, no. 1, pp. 1–6, 2012. View at Google Scholar
  29. O. I. Singh, M. Damayanti, N. R. Singh, R. K. H. Singh, M. Mohapatra, and R. M. Kadam, “Synthesis, EPR and biological activities of bis(1-n-butylamidino-O- alkylurea)copper(II)chloride complexes: EPR evidence for binuclear complexes in frozen DMF solution,” Polyhedron, vol. 24, no. 8, pp. 909–916, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. H. A. El-Boraey, R. M. Abdel-Rahman, E. M. Atia, and K. H. Hilmy, “Spectroscopic, thermal and toxicity studies of some 2-amino-3-cyano-1, 5–diphenylpyrrole containing Schiff bases copper (II) complexes,” Central European Journal of Chemistry, vol. 8, no. 4, pp. 820–833, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Raman, R. Jeyamurugan, M. Subbulakshmi, R. Boominathan, and C. R. Yuvarajan, “Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base,” Chemical Papers, vol. 64, no. 3, pp. 318–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. F. A. Cotton, G. Williknson, C. A. Murillo, and M. Bochman, Advanced Inorganic Chemistry, John Wiley & Sons, New York, NY, USA, 6th edition, 2003.
  33. A. B. P. Lever, Inorganic Spectroscopy, Elsevier, Amsterdam, The Netherlands, 2nd edition, 1984.
  34. K. A. Melha, “Antimicrobial, spectral, magnetic and thermal studies of Cu(II), Ni(II), Co(II), UO2(VI) and Fe(III) complexes of the Schiff base derived from oxalylhydrazide,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 23, no. 2, pp. 285–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. Q. H. Wang, W. Weng, J. M. Liu, L. Z. Cai, and G. C. Guo, “Synthesis, crystal structure, and fluorescence properties of several schiff-base compounds,” Journal of Coordination Chemistry, vol. 59, no. 5, pp. 485–492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. A. W. Varnes, R. B. Dodson, and E. L. Wehry, “Interactions of transition-metal ions with photoexcited states of flavins. Fluorescence quenching studies,” Journal of the American Chemical Society, vol. 94, no. 3, pp. 946–950, 1972. View at Google Scholar · View at Scopus
  37. N. Raman, A. Kulandaisamy, and K. Jeyasubramanian, “Synthesis, structural characterization, redox and antimicrobial studies of Schiff base copper(II), nickel(II), cobalt(II), manganese(II), zinc(II) and oxovanadium(II) complexes derived from benzil and 2-aminobenzyl alcohol,” Polish Journal of Chemistry, vol. 76, no. 8, pp. 1085–1094, 2002. View at Google Scholar · View at Scopus
  38. N. Dharmaraj, P. Viswanathamurthi, and K. Natarajan, “Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity,” Transition Metal Chemistry, vol. 26, no. 1-2, pp. 105–109, 2001. View at Publisher · View at Google Scholar · View at Scopus