Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2012 (2012), Article ID 823830, 6 pages
http://dx.doi.org/10.1155/2012/823830
Research Article

Immobilization of Laccase in Alginate-Gelatin Mixed Gel and Decolorization of Synthetic Dyes

1Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155–6451, Tehran 14174, Iran
2Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand 9717853577, Iran
3Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1457795343, Iran

Received 1 April 2012; Revised 10 June 2012; Accepted 15 June 2012

Academic Editor: Spyros Perlepes

Copyright © 2012 Mehdi Mogharabi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Konsoula and M. Liakopoulou-Kyriakides, “Thermostable α-amylase production by Bacillus subtilis entrapped in calcium alginate gel capsules,” Enzyme and Microbial Technology, vol. 39, no. 4, pp. 690–696, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Silva, C. J. Silva, A. Zille, G. M. Guebitz, and A. Cavaco-Paulo, “Laccase immobilization on enzymatically functionalized polyamide 6,6 fibres,” Enzyme and Microbial Technology, vol. 41, no. 6-7, pp. 867–875, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G. D. Altun and S. A. Cetinus, “Immobilization of pepsin on chitosan beads,” Food Chemistry, vol. 100, no. 3, pp. 964–971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Van De Velde, N. D. Lourenço, H. M. Pinheiro, and M. Bakker, “Carrageenan: a food-grade and biocompatible support for immobilization techniques,” Advanced Synthesis and Catalysis, vol. 344, no. 8, pp. 815–835, 2002. View at Google Scholar · View at Scopus
  5. S. M. Kotwal and V. Shankar, “Immobilized invertase,” Biotechnology Advances, vol. 27, no. 4, pp. 311–322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Joly-Duhamel, D. Hellio, and M. Djabourov, “All gelatin networks: 1. Biodiversity and physical chemistry,” Langmuir, vol. 18, no. 19, pp. 7208–7217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. L. J. Yang and Y. C. Ou, “The micro patterning of glutaraldehyde (GA)-crosslinked gelatin and its application to cell-culture,” Lab on a Chip, vol. 5, no. 9, pp. 979–984, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Tanriseven and S. Doǧan, “A novel method for the immobilization of β-galactosidase,” Process Biochemistry, vol. 38, no. 1, pp. 27–30, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Birnbaum, R. Pendleton, P. O. Larsson, and K. Mosbach, “Covalent stabilization of alginate gel for the entrapment of living whole cells,” Biotechnology Letters, vol. 3, no. 8, pp. 393–400, 1981. View at Google Scholar · View at Scopus
  10. H. Forootanfar, M. A. Faramarzi, A. R. Shahverdi, and M. T. Yazdi, “Purification and biochemical characterization of extracellular laccase from the ascomycete Paraconiothyrium variabile,” Bioresource Technology, vol. 102, no. 2, pp. 1808–1814, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Forootanfar, M. M. Movahednia, S. Yaghmaei et al., “Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase,” Journal of Hazardous Materials, vol. 209-210, pp. 199–203, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. S. R. Couto and J. L. T. Herrera, “Industrial and biotechnological applications of laccases: a review,” Biotechnology Advances, vol. 24, no. 5, pp. 500–513, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Chivukula and V. Renganathan, “Phenolic azo dye oxidation by laccase from Pyricularia oryzae,” Applied and Environmental Microbiology, vol. 61, no. 12, pp. 4374–4377, 1995. View at Google Scholar · View at Scopus
  14. A. Kunamneni, I. Ghazi, S. Camarero, A. Ballesteros, F. J. Plou, and M. Alcalde, “Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers,” Process Biochemistry, vol. 43, no. 2, pp. 169–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. G. K. Parshetti, A. A. Telke, D. C. Kalyani, and S. P. Govindwar, “Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532,” Journal of Hazardous Materials, vol. 176, no. 1–3, pp. 503–509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. H. J. Fan, S. T. Huang, W. H. Chung, J. L. Jan, W. Y. Lin, and C. C. Chen, “Degradation pathways of crystal violet by Fenton and Fenton-like systems: condition optimization and intermediate separation and identification,” Journal of Hazardous Materials, vol. 171, no. 1–3, pp. 1032–1044, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Faramarzi and H. Forootanfar, “Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile,” Colloids and Surfaces B, vol. 87, no. 1, pp. 23–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Aghaie-Khouzani, H. Forootanfar, M. Moshfegh, M. R. Khoshayand, and M. A. Faramarzi, “Decolorization of some synthetic dyes using optimized culture broth of laccase producing ascomycete Paraconiothyrium variabile,” Biochemical Engineering Journal, vol. 60, no. 1, pp. 9–15, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Panouillé and V. Larreta-Garde, “Gelation behaviour of gelatin and alginate mixtures,” Food Hydrocolloids, vol. 23, no. 4, pp. 1074–1080, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  21. A. K. Anal and W. F. Stevens, “Chitosan-alginate multilayer beads for controlled release of ampicillin,” International Journal of Pharmaceutics, vol. 290, no. 1-2, pp. 45–54, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. P. Chen and Y. S. Lin, “Decolorization of azo dye by immobilized Pseudomonas luteola entrapped in alginate-silicate sol-gel beads,” Process Biochemistry, vol. 42, no. 6, pp. 934–942, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Hu, X. Zhao, and H. M. Hwang, “Comparative study of immobilized Trametes versicolor laccase on nanoparticles and kaolinite,” Chemosphere, vol. 66, no. 9, pp. 1618–1626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Hublik and F. Schinner, “Characterization and immobilization of the laccase from Pleurotus ostreatus and its use for the continuous elimination of phenolic pollutants,” Enzyme and Microbial Technology, vol. 27, no. 3–5, pp. 330–336, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Q. Yang, X. X. Zhao, C. Y. Liu, Y. Zheng, and S. J. Qian, “Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase,” Process Biochemistry, vol. 44, no. 10, pp. 1185–1189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. G. K. Parshetti, S. G. Parshetti, A. A. Telke, D. C. Kalyani, R. A. Doong, and S. P. Govindwar, “Biodegradation of crystal violet by Agrobacterium radiobacter,” Journal of Environmental Sciences, vol. 23, no. 8, pp. 1384–1393, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Selvam, K. Swaminathan, and K. S. Chae, “Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp,” Bioresource Technology, vol. 88, no. 2, pp. 115–119, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Yinghui, W. Qiuling, and F. Shiyu, “Laccase stabilization by covalent binding immobilization on activated polyvinyl alcohol carrier,” Letters in Applied Microbiology, vol. 35, no. 6, pp. 451–456, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Vishal Gupta, D. V. Gowda, V. Balamuralidhara, and S. Mohammed Khan, “Formulation and evaluation of olanzapine matrix pellets for controlled release,” DARU, Journal of Pharmaceutical Sciences, vol. 19, no. 4, pp. 249–256, 2011. View at Google Scholar · View at Scopus
  30. F. G. Mutti, R. Pievo, M. Sgobba, M. Gullotti, and L. Santagostini, “Biomimetic modeling of copper complexes: a study of enantioselective catalytic oxidation on D-(+)-catechin and L-(−)-epicatechin with copper complexes,” Bioinorganic Chemistry and Applications, vol. 2008, Article ID 762029, 9 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Y. Xiao, J. Huang, C. Liu, and D. S. Jiang, “Immobilization of laccase on amine-terminated magnetic nano-composite by glutaraldehyde crosslinking method,” Transactions of Nonferrous Metals Society of China, vol. 16, supplement 1, pp. s414–s418, 2006. View at Publisher · View at Google Scholar · View at Scopus