Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2013, Article ID 425832, 9 pages
http://dx.doi.org/10.1155/2013/425832
Research Article

Synthesis, Spectral, and In Vitro Antibacterial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Amino Acids

Department of Chemistry, Faculty of Engineering and Technology, Mody Institute of Technology and Science, Lakshmangarh, Sikar, Rajasthan 332311, India

Received 21 April 2013; Revised 29 June 2013; Accepted 2 July 2013

Academic Editor: Imre Sovago

Copyright © 2013 Har Lal Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Iqbal, S. Ali, N. Muhammad, M. Parvez, P. Langer, and A. Villinger, “Synthesis, characterization, crystal structures and electrochemical studies of organotin(IV) carboxylates,” Journal of Organometallic Chemistry, vol. 723, pp. 214–223, 2013. View at Publisher · View at Google Scholar
  2. D. Karmakar, M. Fleck, R. Saha, M. Layek, S. Kumar, and D. Bandyopadhyay, “Synthesis and crystal structure of a group of phenoxo-bridged heterodinuclear [NiIIHgII] Schiff base complexes,” Polyhedron, vol. 49, pp. 93–99, 2013. View at Google Scholar
  3. A. R. Parent, S. Vedachalam, C. P. Landee, and M. M. Turnbull, “Syntheses, crystal structures and magnetic properties of heteronuclear bimetallic compounds of [Cu(pdc)2][M(H2O)5] · 2H2O [M=Ni(II), Co(II), Mn(II); pdc = 2,6-pyridinedicarboxylato],” Journal of Coordination Chemistry, vol. 61, no. 1, pp. 93–108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. A. Khandar, V. T. Yilmaz, F. Costantino, S. Gumus, S. A. Hosseini-Yazdi, and G. Mahmoudi, “Syntheses, studies and crystal structures of coordination polymers and dinuclear complexes of mercury(II) halides and thiocyanate with a symmetrical Schiff base ligand,” Inorganica Chimica Acta, vol. 394, pp. 36–44, 2013. View at Google Scholar
  5. A. Azadmeher, M. M. Amini, N. Hadipour, H. R. Khavasi, H.-K. Fun, and C.-J. Chen, “Synthesis and structural characterization of diorganotin(IV) complexes with 2,6-pyridinedicarboxylic acid,” Applied Organometallic Chemistry, vol. 22, no. 1, pp. 19–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. J. Dhanaraj and M. S. Nair, “Synthesis, characterization, and antimicrobial studies of some Schiff-base metal(II) complexes,” Journal of Coordination Chemistry, vol. 62, no. 24, pp. 4018–4028, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Puccetti, G. Fasolis, D. Vullo, Z. H. Chohan, A. Scozzafava, and C. T. Supuran, “Carbonic anhydrase inhibitors. Inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Schiff's bases incorporating chromone and aromatic sulfonamide moieties, and their zinc complexes,” Bioorganic and Medicinal Chemistry Letters, vol. 15, no. 12, pp. 3096–3101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. N. Patel, C. R. Patel, and H. N. Joshi, “Synthesis, characterization and biological studies of mononuclear copper(II) complexes with ciprofloxacin and N, O donor ligands,” Inorganic Chemistry Communications, vol. 27, pp. 51–55, 2013. View at Google Scholar
  9. M. Ul-Hassan, Z. H. Chohan, A. Scozzafava, and C. T. Supuran, “Carbonic anhydrase inhibitors: Schiff's bases of aromatic and heterocyclic sulfonamides and their metal complexes,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 19, no. 3, pp. 263–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. H.-Y. Zhang, J. Lei, Y.-Y. Chen, Q.-A. Wu, Y.-S. Zhang, and L.-H. Gao, “Synthesis of the N,N-bis(ferrocenylmethylene)-1,2-phenylenediamine schiff base and six rare earth metal complexes,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 31, no. 6, pp. 973–981, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Zuo, C. Bi, Y. Fan et al., “Cellular and computational studies of proteasome inhibition and apoptosis induction in human cancer cells by amino acid Schiff base-copper complexes,” Journal of Inorganic Biochemistry, vol. 118, pp. 83–93, 2013. View at Google Scholar
  12. H. L. Singh, J. B. Singh, and K. P. Sharma, “Synthetic, structural, and antimicrobial studies of organotin(IV) complexes of semicarbazone, thiosemicarbazone derived from 4-hydroxy-3-methoxybenzaldehyde,” Research on Chemical Intermediates, vol. 38, no. 1, pp. 53–65, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Sharma, H. L. Singh, S. Varshney, P. Sharma, and A. K. Varshney, “Some new coordination compounds of organosilicon(IV) with schiff bases of sulpha drugs,” Phosphorus, Sulfur and Silicon and the Related Elements, vol. 178, no. 4, pp. 811–819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Singh, D. Dharampal, and V. Parkash, “Synthesis, spectroscopic studies, and in vitro antifungal activity of organosilicon(IV) and organotin(IV) complexes of 4-amino-5-mercapto-3-methyl-S-triazole Schiff bases,” Phosphorus, Sulfur and Silicon and the Related Elements, vol. 183, no. 11, pp. 2784–2794, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Doddi, J. V. Kingston, V. Ramkumar, M. Suzuki, M. Hojo, and M. N. S. Rao, “Synthesis and characterization of dianionic hexacoordinate silicon(iv) complexes of substituted catechols, flavones, and fluorone: X-ray crystal structures of [(n-C3H7)2NH2]2[(Cl4C6O2)3Si] · 3 CH3CN and [(n-C3H7)2NH2]2[(Br4C6O2)3Si] · 2 (CH3)2SO,” Phosphorus, Sulfur and Silicon and the Related Elements, vol. 187, no. 3, pp. 343–356, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Eng, D. Whalen, P. Musingarimi, J. Tierney, and M. DeRosa, “Fungicidal and spectral studies of some triphenyltin compounds,” Applied Organometallic Chemistry, vol. 12, no. 1, pp. 25–30, 1998. View at Google Scholar · View at Scopus
  17. Z. Moradi-Shoeili, D. M. Boghaei, M. Amini, M. Bagherzadeh, and B. Notash, “New molybdenum(VI) complex with ONS-donor thiosemicarbazone ligand: preparation, structural characterization, and catalytic applications in olefin epoxidation,” Inorganic Chemistry Communications, vol. 27, pp. 26–30, 2013. View at Google Scholar
  18. M. M. Tamizh, B. F. T. Cooper, C. L. B. Macdonald, and R. Karvembu, “Palladium(II) complexes with salicylideneimine based tridentate ligand and triphenylphosphine: synthesis, structure and catalytic activity in Suzuki-Miyaura cross coupling reactions,” Inorganica Chimica Acta, vol. 394, pp. 391–400, 2013. View at Google Scholar
  19. J. Devii, N. Batra, and S. Kumar, “Synthesis and characterization of novel Organosilicon (IV) complexes with pyridine dicarboxylic acid and Mercapto pyridine carboxylic acid,” International Journal of Research in Chemistry and Environment, vol. 1, no. 2, pp. 50–56, 2011. View at Google Scholar
  20. M. Nath, S. Goyal, and S. Goyal, “Synthesis, spectral and biological studies of organosilicon(IV) complexes of Schiff bases derived from amino acids,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 30, no. 9, pp. 1791–1804, 2000. View at Google Scholar · View at Scopus
  21. R. Malhotra, M. S. Malik, J. P. Singh, and K. S. Dhindsa, “Synthesis, characterization, and microbiocidal activity of α-methyl-(2-thiophenomethylene) aryloxyacetic acid hydrazides and their metal complexes,” Journal of Inorganic Biochemistry, vol. 45, no. 4, pp. 269–275, 1992. View at Publisher · View at Google Scholar · View at Scopus
  22. T. M. Aminabhavi, N. S. Biradar, S. B. Patil, D. E. Hoffman, and V. N. Biradar, “Synthesis and characterization of biologically active organosilicon and organotin complexes of phenylglycyl hydrazones,” Inorganica Chimica Acta, vol. 135, no. 2, pp. 139–143, 1987. View at Google Scholar · View at Scopus
  23. S. Sonika, M. Meenakshi, and R. Malhotra, “Novel bioactive thio- and semicarbazide ligands and their organosilicon (IV) complexes,” Phosphorus, Sulfur and Silicon and the Related Elements, vol. 185, no. 9, pp. 1875–1885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Jain and R. V. Singh, “Synthesis, characterization, and biotoxicity of NN donor sulphonamide imine silicon(IV) complexes,” Bioinorganic Chemistry and Applications, vol. 2006, Article ID 13743, 10 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Nath and S. Goyal, “Synthesis, characteristic spectral studies, and in vitro antimicrobial activity of organosilicon(IV) derivatives of N-benzoylamino acids,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 34, no. 1, pp. 187–210, 2004. View at Google Scholar · View at Scopus
  26. M. G. Voronkov and V. P. Baryshok, Silatranes for Medicine and Agriculture, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia, 2005.
  27. H. L. Singh and J. B. Singh, “Synthesis and characterization of new lead(II) complexes of Schiff bases derived from amino acids,” Research on Chemical Intermediates, vol. 39, pp. 1997–2009, 2013. View at Google Scholar
  28. H. L. Singh and J. B. Singh, “Synthesis, spectroscopic and antimicrobial studies of lead(II) complexes of Schiff bases derived from amino acids and isatins,” Spectroscopy Letters, vol. 46, pp. 286–296, 2013. View at Google Scholar
  29. H. L. Singh and J. B. Singh, “Synthesis, spectral, 3D molecular modeling and antibacterial studies of dibutyltin (IV) Schiff base complexes derived from substituted isatin and amino acids,” Natural Science, vol. 4, no. 3, pp. 170–178, 2012. View at Google Scholar
  30. M. Jain, S. Gaur, V. P. Singh, and R. V. Singh, “Organosilicon(IV) and organotin(IV) complexes as biocides and nematicides: synthetic, spectroscopic and biological studies of NN donor sulfonamide imine and its chelates,” Applied Organometallic Chemistry, vol. 18, no. 2, pp. 73–82, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Nath and S. Goyal, “Triorganosilicon(IV) derivatives of aminoacids,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 32, no. 7, p. 1205, 2002. View at Publisher · View at Google Scholar
  32. M. Jain, S. Gaur, S. C. Diwedi, S. C. Joshi, R. V. Singh, and A. Bansal, “Nematicidal, insecticidal, antifertility, antifungal and antibacterial activities of salicylanilide sulphathiazole and its manganese, silicon and tin complexes,” Phosphorus, Sulfur and Silicon and the Related Elements, vol. 179, no. 8, pp. 1517–1537, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Zhang, W. H. Li, H. Z. Jia, S. F. Weng, and J. G. Wu, Proceedings of the Twelfth International Conference on Fourier Transform Spectroscopy, Waseda University, Tokyo, Japan, 1999.
  34. M. S. Singh and P. K. Singh, “Hexa-coordinate silicon complexes, syntheis and chacterization,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 33, no. 2, p. 271, 2003. View at Publisher · View at Google Scholar
  35. M. D. Raju, “Nitrogen, oxygen bonded hetrocyclic organosilicon(IV) derivatives of a new Schiff base: synthesis and spectral aspects,” Journal of Current Chemical & Pharmaceutical Sciences, vol. 1, no. 1, pp. 9–14, 2011. View at Google Scholar
  36. R. Malhotra, J. Mehta, and J. K. Puri, “Heterobimetallic complexes containing iron (II) and hexa-coordinated organosilicon,” Central European Journal of Chemistry, vol. 5, no. 3, pp. 858–867, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Sharma, B. Khungar, S. Varshney, H. L. Singh, U. D. Tripaathi, and A. K. Varshney, “Coordination behavior of biologically active schiff bases of amino acids towards silicon(IV) ion,” Phosphorus, Sulfur and Silicon and Related Elements, vol. 174, pp. 239–246, 2001. View at Google Scholar · View at Scopus
  38. J. H. Small, K. J. Shea, D. A. Loy, and G. M. Jamison, ACS Symposium Series 585, American Chemical Society, Washington, DC, USA, 1995.
  39. K. Singh, P. Puri, and D. Dharampal, “Synthesis and spectroscopic studies of some new organometallic chelates derived from bidentate ligands,” Turkish Journal of Chemistry, vol. 34, no. 4, pp. 499–507, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Tweedy, “Possible mechanism for reduction of elemental sulfur by monilinia fructicola,” Phytopathology, vol. 55, pp. 910–914, 1964. View at Google Scholar
  41. B. Geeta, K. Shravankumar, P. M. Reddy et al., “Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: synthesis, structural characterization, and antibacterial activity,” Spectrochimica Acta Part A, vol. 77, no. 4, pp. 911–915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. A. W. Varnes, R. B. Dodson, and E. L. Wehry, “Interactions of transition-metal ions with photoexcited states of flavins. Fluorescence quenching studies,” Journal of the American Chemical Society, vol. 94, no. 3, pp. 946–950, 1972. View at Google Scholar · View at Scopus
  43. E. Abele, “Activation of silicon bonds by fluoride ion in the organic synthesis in the new millennium: a review,” Main Group Metal Chemistry, vol. 28, no. 2, pp. 45–69, 2005. View at Google Scholar · View at Scopus