Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2014, Article ID 135824, 11 pages
http://dx.doi.org/10.1155/2014/135824
Research Article

Green Synthesis of Silver Nanoparticles: Structural Features and In Vivo and In Vitro Therapeutic Effects against Helicobacter pylori Induced Gastritis

1Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
2College of Pharmacy, Salman bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
3Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan
4Deanship of Scientific Research College of Engineering, King Saud University, P.O. Box 800, Riyadh, Saudi Arabia
5Center of Excellence in Nanotechnology Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
6Institute of Microbiology, Faculty of Veterinary Sciences, University of Agriculture, Faisalabad 38040, Pakistan

Received 20 April 2014; Revised 16 June 2014; Accepted 16 June 2014; Published 6 August 2014

Academic Editor: Imre Sovago

Copyright © 2014 Muhammad Amin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Bhattacharya and P. Mukherjee, “Biological properties of “naked” metal nanoparticles,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1289–1306, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Amin, F. Iram, M. S. Iqbal, M. Z. Saeed, M. Raza, and S. Alam, “Arabinoxylan-mediated synthesis of gold and silver nanoparticles having exceptional high stability,” Carbohydrate Polymers, vol. 92, no. 2, pp. 1896–1900, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Leaper, “Silver dressings: their role in wound management,” International Wound Journal, vol. 3, no. 4, pp. 282–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Baruah, G. J. Gabriel, M. J. Akbashev, and M. E. Booher, “Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction,” Langmuir, vol. 29, no. 13, pp. 4225–4234, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Daizy, “Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 42, no. 5, pp. 1417–1424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh, “Biological synthesis of metallic nanoparticles,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 6, no. 2, pp. 257–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Montazer, F. Alimohammadi, A. Shamei, and M. K. Rahimi, “Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing,” Colloids and Surfaces B: Biointerfaces, vol. 89, no. 1, pp. 196–202, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Devaux, C. Laurent, and A. Rousset, “Chemical synthesis of metal nanoparticles dispersed in alumina,” Nanostructured Materials, vol. 2, no. 4, pp. 339–346, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Pastoriza-Santos and L. M. Liz-Marzán, “Formation of PVP-protected metal nanoparticles in DMF,” Langmuir, vol. 18, no. 7, pp. 2888–2894, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Albrecht, C. W. Evans, and C. L. Raston, “Green chemistry and the health implications of nanoparticles,” Green Chemistry, vol. 8, no. 5, pp. 417–432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Amin, F. Anwar, M. R. S. A. Janjua, M. A. Iqbal, and U. Rashid, “Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori,” International Journal of Molecular Sciences, vol. 13, no. 8, pp. 9923–9941, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. A. J. Kora, R. B. Sashidhar, and J. Arunachalam, “Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application,” Carbohydrate Polymers, vol. 82, no. 3, pp. 670–679, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. B. E. Dunn, H. Cohen, and M. J. Blaser, “Helicobacter pylori,” Clinical Microbiology Reviews, vol. 10, no. 4, pp. 720–741, 1997. View at Google Scholar · View at Scopus
  14. P. Kostamo, L. Veijola, A. Oksanen, S. Sarna, and H. Rautelin, “Recent trends in primary antimicrobial resistance of Helicobacter pylori in Finland,” International Journal of Antimicrobial Agents, vol. 37, no. 1, pp. 22–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Mégraud, N. Lehn, T. Lind et al., “Antimicrobial susceptibility testing of Helicobacter pylori in a large multicenter trial: the MACH 2 study,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 11, pp. 2747–2752, 1999. View at Google Scholar · View at Scopus
  16. M. Amin, M. S. Iqbal, R. W. Hughes et al., “Mechanochemical synthesis and in vitro anti-Helicobacter pylori and uresase inhibitory activities of novel zinc(II)famotidine complex,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 25, no. 3, pp. 383–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. P. Gisbert and X. Calvet, “Review article: Non-bismuth quadruple (concomitant) therapy for eradication of Helicobater pylori,” Alimentary Pharmacology and Therapeutics, vol. 34, no. 6, pp. 604–617, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Matsukura and H. Tanaka, “Applicability of zinc complex of L-carnosine for medical use,” Biochemistry, vol. 65, no. 7, pp. 817–823, 2000. View at Google Scholar · View at Scopus
  19. S. C. Sweetman, Martindale: The Complete Drug Reference, Pharmaceutical Press, London, UK, 35th edition, 2007.
  20. M. C. Fung and D. L. Bowen, “Silver products for medical indications: risk-benefit assessment,” Journal of Toxicology: Clinical Toxicology, vol. 34, no. 1, pp. 119–126, 1996. View at Google Scholar · View at Scopus
  21. M. L. Harsh and T. N. Nag, “Antimicrobial principles from in vitro tissue culture of Peganum harmala,” Journal of Natural Products, vol. 47, no. 2, pp. 365–367, 1984. View at Google Scholar · View at Scopus
  22. A. H. S. Mohamed, S. M. J. AL-Jammali, and Z. J. Naki, “Effect of repeated administration of Peganum harmala alcoholic extract on the liver and kidney in Albino mice: a histo-pathological study,” Journal of Scientific & Innovative Research, vol. 2, no. 3, pp. 585–597, 2013. View at Google Scholar
  23. M. Moloudizargari, P. Mikaili, S. Aghajanshakeri, M. H. Asghari, and J. Shayegh, “Pharmacological and therapeutic effects of harmala and its main alkaloids,” Pharmacognosy Review, vol. 7, no. 14, pp. 199–212, 2013. View at Google Scholar
  24. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV-Vis spectra,” Analytical Chemistry, vol. 79, no. 11, pp. 4215–4221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. Laboratory Methodologies for Bacterial Antimicrobial Susceptibility Testing, OIE Terrestrial Manual 2008.
  26. R. A. De Matos, T. Da Silva Cordeiro, R. E. Samad, N. D. Vieira Jr., and L. C. Courrol, “Green synthesis of gold nanoparticles of different sizes and shapes using agar-agar water solution and femtosecond pulse laser irradiation,” Applied Physics A, vol. 109, no. 3, pp. 737–741, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. V. K. Vidhu, S. A. Aromal, and D. Philip, “Green synthesis of silver nanoparticles using Macrotyloma uniflorum,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 83, no. 1, pp. 392–397, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. D. L. van Hyning, W. G. Klemperer, and C. F. Zukoski, “Silver nanoparticle formation: predictions and verification of the aggregative growth model,” Langmuir, vol. 17, no. 11, pp. 3128–3135, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. S. F. Shayesteh, S. Kolahi, and Y. A. Kalandarragh, “Effect of pH on the structure and optical properties of nanoparticles embadded in PVA matrix,” Indian Journal of Pure and Applied Physics, vol. 51, no. 11, pp. 780–783, 2013. View at Google Scholar
  30. T. C. Prathna, N. Chandrasekaran, A. M. Raichur, and A. Mukherjee, “Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 377, no. 1–3, pp. 212–216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. D. P. Gnanadhas, M. B. Thomas, R. Thomas, A. M. Raichur, and D. Chakravortty, “Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity vivo,” Antimicrobial Agents and Chemotherapy, vol. 57, no. 10, pp. 4945–4955, 2013. View at Publisher · View at Google Scholar
  32. T. Kanamaru, Y. Nakano, Y. Toyoda et al., “In vitro and in vivo antibacterial activities of TAK-083, an agent for treatment of Helicobacter pylori infection,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 9, pp. 2455–2459, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Kim, M. Kim, H. Park, U. S. Shin, M. Gong, and H. Kim, “Size-dependent cellular toxicity of silver nanoparticles,” Journal of Biomedical Materials Research A, vol. 100, no. 4, pp. 1033–1043, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. J. S. Kim, K. S. Song, J. H. Sung et al., “Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles,” Nanotoxicology, vol. 7, no. 5, pp. 953–960, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. D. MubarakAli, N. Thajuddin, K. Jeganathan, and M. Gunasekaran, “Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens,” Colloids and Surfaces B: Biointerfaces, vol. 85, no. 2, pp. 360–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. J. P. Gisbert, X. Calvet, A. O'Connor, F. Mégraud, and C. A. O'Morain, “Sequential therapy for helicobacter pylori eradication: a critical review,” Journal of Clinical Gastroenterology, vol. 44, no. 5, pp. 313–325, 2010. View at Publisher · View at Google Scholar · View at Scopus