Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2014 (2014), Article ID 603481, 9 pages
http://dx.doi.org/10.1155/2014/603481
Research Article

Consecutively Preparing D-Xylose, Organosolv Lignin, and Amorphous Ultrafine Silica from Rice Husk

1Chemistry Department, Changji University, No. 77, North Beijing Road, Changji 831100, China
2College of Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun 130012, China

Received 6 May 2014; Accepted 8 July 2014; Published 22 July 2014

Academic Editor: Takao Yagi

Copyright © 2014 Hongxi Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Qu, Y. Tian, B. Zou et al., “A novel mesoporous lignin/silica hybrid from rice husk produced by a sol-gel method,” Bioresource Technology, vol. 101, no. 21, pp. 8402–8405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Görhan and O. Şimsek, “Porous clay bricks manufactured with rice husks,” Construction and Building Materials, vol. 40, pp. 390–396, 2013. View at Publisher · View at Google Scholar
  3. Y. P. Guo, S. F. Yang, J. Z. Zhao, Z. C. Wang, and M. Y. Zhao, “Preparation of active carbon with high specific surface area from rice husks,” Chemical Journal of Chinese Universities, vol. 21, no. 3, pp. 335–338, 2000. View at Google Scholar · View at Scopus
  4. O. C. Okeh, C. O. Onwosi, and F. J. C. Odibo, “Biogas production from rice husks generated from various rice mills in Ebonyi State, Nigeria,” Renewable Energy, vol. 62, pp. 204–208, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Adam, K. Kandasamy, and S. Balakrishnan, “Iron incorporated heterogeneous catalyst from rice husk ash,” Journal of Colloid and Interface Science, vol. 304, no. 1, pp. 137–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Watanabe, M. Shida, T. Murayama et al., “Xyloglucan in cell walls of rice hull,” Carbohydrate Research, vol. 129, pp. 229–242, 1984. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Yu, X. Lou, and H. Wu, “Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods,” Energy and Fuels, vol. 22, no. 1, pp. 46–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Mu, H. Ben, A. Ragauskas, and Y. Deng, “Lignin pyrolysis components and upgrading-technology review,” Bioenergy Research, vol. 6, no. 4, pp. 1183–1204, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Ganvir and K. Das, “Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash,” Journal of Hazardous Materials, vol. 185, no. 2-3, pp. 1287–1294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. W. van Beinum, S. Beulke, and C. D. Brown, “Pesticide sorption and desorption by lignin described by an intraparticle diffusion model,” Environmental Science & Technology, vol. 40, no. 2, pp. 494–500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Suhas, P. J. M. Carrott, and M. M. L. Ribeiro Carrott, “Lignin-from natural adsorbent to activated carbon: a review,” Bioresource Technology, vol. 98, no. 12, pp. 2301–2312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. G. J. Cui, W. B. Xia, G. J. Chen, M. Wei, and J. Huang, “Enhanced mechanical performances of waterborne polyurethane loaded with lignosulfonate and its supramolecular complexes,” Journal of Applied Polymer Science, vol. 106, no. 6, pp. 4257–4263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Gilarranz, A. Santos, J. García, M. Oliet, and F. Rodríguez, “Kraft pulping of Eucalyptus globulus: kinetics of residual delignification,” Industrial and Engineering Chemistry Research, vol. 41, no. 8, pp. 1955–1959, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Gu, J. Zhou, Z. Luo, Q. Wang, and M. Ni, “A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk,” Industrial Crops and Products, vol. 50, pp. 540–549, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. N. S. C. Zulkifli, I. Ab Rahman, D. Mohamad, and A. Husein, “A green sol-gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler,” Ceramics International, vol. 39, no. 4, pp. 4559–4567, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. K. P. Dey, S. Ghosh, and M. K. Naskar, “Organic template-free synthesis of ZSM-5 zeolite particles using rice husk ash as silica source,” Ceramics International, vol. 39, no. 2, pp. 2153–2157, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. V. B. Carmona, R. M. Oliveira, W. T. L. Silva, L. H. C. Mattoso, and J. M. Marconcini, “Nanosilica from rice husk: extraction and characterization,” Industrial Crops and Products, vol. 43, no. 1, pp. 291–296, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Zhang, X. Zhao, X. Ding et al., “A study on the consecutive preparation of d-xylose and pure superfine silica from rice husk,” Bioresource Technology, vol. 101, no. 4, pp. 1263–1267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Yokoyama and Y. Matsumoto, “Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin. Part 2: detailed reaction mechanism of a non-phenolic C6-C2 type model compound,” Journal of Wood Chemistry and Technology, vol. 30, no. 3, pp. 269–282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Kishimoto, A. Ueki, H. Takamori, Y. Uraki, and M. Ubukata, “Delignification mechanism during high-boiling solvent pulping. Part 6: changes in lignin structure analyzed by1H-13C correlation 2-D NMR spectroscopy,” Holzforschung, vol. 58, no. 4, pp. 355–362, 2004. View at Publisher · View at Google Scholar · View at Scopus