Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2014, Article ID 782762, 13 pages
http://dx.doi.org/10.1155/2014/782762
Research Article

Synthesis and Spectroscopic and Biological Activities of Zn(II) Porphyrin with Oxygen Donors

1Department of Chemistry, University of Jammu, New Campus, Baba Sahib Ambedkar Road, Jammu, Jammu and Kashmir 180 006, India
2School of Biotechnology, University of Jammu, New Campus, Baba Sahib Ambedkar Road, Jammu, Jammu and Kashmir 180 006, India

Received 16 October 2013; Accepted 4 December 2013; Published 16 March 2014

Academic Editor: Ian Butler

Copyright © 2014 Gauri Devi Bajju et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. K. Gupta, D. K. Chauhan, V. K. Saini, S. Agarwal, M. M. Antonijevic, and H. Lang, “A porphyrin based potentiometric sensor for Zn2+ determination,” Sensors, vol. 3, no. 7, pp. 223–235, 2003. View at Google Scholar · View at Scopus
  2. C.-T. Chen, “Evolution of red organic light-emitting diodes: materials and devices,” Chemistry of Materials, vol. 16, no. 23, pp. 4389–4400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Analytical Chemistry, vol. 78, no. 12, pp. 3859–3873, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. V. K. Gupta, S. Chandra, D. K. Chauhan, and R. Mangla, “Membranes of 5,10,15,20-tetrakis(4-methoxyphenyl) porphyrinatocobalt (TMOPP-Co) (I) as MoO4  2− -selective sensors,” Sensors, vol. 2, no. 5, pp. 164–173, 2002. View at Google Scholar · View at Scopus
  5. K. I. Ozoemena, “Anodic oxidation and amperometric sensing of hydrazine at a glassy carbon electrode modified with cobalt (II) phthalocyanine-cobalt (II) tetraphenylporphyrin (CoPc-(CoTPP)4) supramolecular complex,” Sensors, vol. 6, no. 8, pp. 874–891, 2006. View at Google Scholar · View at Scopus
  6. O. Ikeda, K. Yoshinaga, and J. Lei, “Nitric oxide detection with glassy carbon electrodes coated with charge-different polymer films,” Sensors, vol. 5, no. 4-5, pp. 161–170, 2005. View at Google Scholar · View at Scopus
  7. R. Purrello, A. Raudino, L. Monsù Scolaro, A. Loisi, E. Bellacchio, and R. Lauceri, “Ternary porphyrin aggregates and their chiral memory,” Journal of Physical Chemistry B, vol. 104, no. 46, pp. 10900–10908, 2000. View at Google Scholar · View at Scopus
  8. H. S. Cho, D. H. Jeong, S. Cho et al., “Photophysical properties of porphyrin tapes,” Journal of the American Chemical Society, vol. 124, no. 49, pp. 14642–14654, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Yu, X. Wang, B. Zhang, Y. Weng, and L. Zhang, “Prolonged excited-state lifetime of porphyrin due to the addition of colloidal SiO2 to Triton X-100 micelles,” Langmuir, vol. 20, no. 5, pp. 1582–1586, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Tangestaninejad, M. H. Habibi, V. Mirkhani, and M. Moghadam, “Mn (Br8TPPS) supported on Amberlite IRA-400 as a robust and efficient catalyst for alkene epoxidation and alkane hydroxylation,” Molecules, vol. 7, no. 2, pp. 264–270, 2002. View at Google Scholar · View at Scopus
  11. E. G. Girichev, M. I. Bazanov, N. Z. Mamardashvili, and A. Gjeyzak, “Electrochemical and electrocatalytical properties of 3,7,13,17-tetramethyl- 2,8,12,18-tetrabutylporphyrin in alkaline solution,” Molecules, vol. 5, no. 6, pp. 767–774, 2000. View at Google Scholar · View at Scopus
  12. B. Gao, Y. Chen, and Q. Lei, “Hydroxylationof cyclohexanewith molecular oxygen catalyzed by highly efficient heterogeneous Mn(III) porphyrin catalysts prepared by special synthesis and immobilization method,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 74, no. 1–4, pp. 455–465, 2012. View at Google Scholar
  13. A. E. O'Connor, W. M. Gallagher, and A. T. Byrne, “Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy,” Photochemistry and Photobiology, vol. 85, no. 5, pp. 1053–1074, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Wathier and M. W. Grinstaff, “Synthesis and properties of supramolecular ionic networks,” Journal of the American Chemical Society, vol. 130, no. 30, pp. 9648–9649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. M. Drain, A. Varotto, and I. Radivojevic, “Self-organized porphyrinic materials,” Chemical Reviews, vol. 109, no. 5, pp. 1630–1658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Vlascici, E. F. Cosma, E. M. Pica et al., “Free base porphyrins as ionophores for heavy metal sensors,” Sensors, vol. 8, no. 8, pp. 4995–5004, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Aviezer, S. Cotton, M. David et al., “Porphyrin analogues as novel antagonists of fibroblast growth factor and vascular endothelial growth factor receptor binding that inhibit endothelial cell proliferation, tumor progression, and metastasis,” Cancer Research, vol. 60, no. 11, pp. 2973–2980, 2000. View at Google Scholar · View at Scopus
  18. H. Imahori, Y. Mori, and Y. Matano, “Nanostructured artificial photosynthesis,” Journal of Photochemistry and Photobiology C, vol. 4, no. 1, pp. 51–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Forneli, M. Planells, M. A. Sarmentero et al., “The role of para-alkyl substituents on meso-phenyl porphyrin sensitised TiO2 solar cells: control of the eTiO2/electrolyte+ recombination reaction,” Journal of Materials Chemistry, vol. 18, no. 14, pp. 1652–1658, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour, and L. Korsakoff, “A simplified synthesis for meso-tetraphenylporphin,” Journal of Organic Chemistry, vol. 32, no. 2, p. 476, 1967. View at Google Scholar · View at Scopus
  21. K. M. Kadish, K. M. Smith, and R. Guilard, The Porphyrin Handbook, Academic Press, San Diego, Calif, USA, 2000.
  22. K. Saito, Y. Kashiwagi, K. Ohkubo, and S. Fukuzumi, “An extremely long-lived charge-separated state of zinc tetraphenylporphyrin coordinated with pyridylnaphthalene-diimide,” Journal of Porphyrins and Phthalocyanines, vol. 10, no. 12, pp. 1371–1379, 2006. View at Google Scholar · View at Scopus
  23. V. K. K. Praneeth, F. Paulat, T. C. Berto et al., “Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes,” Journal of the American Chemical Society, vol. 130, no. 46, pp. 15288–15303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. S. Semeikin, O. I. Koifman, and B. D. Berezin, “Synthesis of tetraphenylporphins with active groups in the phenyl rings. 1. Preparation of tetrakis(4-aminophenyl)porphin,” Chemistry of Heterocyclic Compounds, vol. 18, no. 10, pp. 1046–1047, 1982. View at Publisher · View at Google Scholar · View at Scopus
  25. K. M. Kadish, K. M. Smith, and R. Guilard, “Biochemistry and binding activation of small molecules,” in The Porphyrin Handbook, Academic Press, New York, NY, USA, 1999. View at Google Scholar
  26. M. Nappa and J. S. Valentine, “The influence of axial ligands on metalloporphyrin visible absorption spectra. Complexes of tetraphenylporphinatozinc,” Journal of the American Chemical Society, vol. 100, no. 16, pp. 5075–5080, 1978. View at Google Scholar · View at Scopus
  27. M.-Y. R. Wang and B. M. Hoffman, “Systematic trends in metalloporphyrin optical spectra,” Journal of the American Chemical Society, vol. 106, no. 15, pp. 4235–4240, 1984. View at Google Scholar · View at Scopus
  28. I. Stojiljkovic, B. D. Evavold, and V. Kumar, “Antimicrobial properties of porphyrins,” Expert Opinion on Investigational Drugs, vol. 10, no. 2, pp. 309–320, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Rajesh, A. K. Rahiman, K. S. Bharathi, S. Sreedaran, V. Gangadevi, and V. Narayanan, “Spectroscopic, redox and biological studies of push-pull porphyrins and their metal complees,” Bulletin of the Korean Chemical Society, vol. 31, no. 9, pp. 2656–2664, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Bozja, J. Sherrill, S. Michielsen, and I. Stojiljkovic, “Porphyrin-based, light-activated antimicrobial materials,” Journal of Polymer Science, Part A, vol. 41, no. 15, pp. 2297–2303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. R. A. Sanchez-Delgado, K. Lazardi, L. Rincon, and J. A. Urbina, “Toward a novel metal-based chemotherapy against tropical diseases. 1. Enhancement of the efficacy of clotrimazole against Trypanosoma cruzi by complexation to ruthenium in RuCl2(clotrimazole)2,” Journal of Medicinal Chemistry, vol. 36, pp. 2041–2043, 1993. View at Publisher · View at Google Scholar
  32. M. T. H. Tarafder, K. T. Jin, K. A. Crouse, A. M. Ali, B. M. Yamin, and H.-K. Fun, “Coordination chemistry and bioactivity of Ni2+, Cu2+, Cd2+ and Zn2+ complexes containing bidentate schiff bases derived from S-benzyldithiocarbazate and the X-ray crystal structure of bis[S-benzyl-β-N-(5-methyl-2-furylmethylene)dithiocarbazato]cadmium(II),” Polyhedron, vol. 21, no. 25-26, pp. 2547–2554, 2002. View at Google Scholar · View at Scopus
  33. J. Sheikh, H. Juneja, V. Ingle, P. Ali, and T. B. Hadda, “Synthesis and in vitro biology of Co(II), Ni(II), Cu(II) and Zinc(II) complexes of functionalized beta-diketone bearing energy buried potential antibacterial and antiviral O,O pharmacophore sites,” Journal of Saudi Chemical Society, vol. 17, pp. 269–276, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. J. R. Platt and H. B. Klevens, “Spectroscopy of organic molecules in the vacuum ultraviolet,” Reviews of Modern Physics, vol. 16, no. 3-4, pp. 182–223, 1944. View at Publisher · View at Google Scholar · View at Scopus
  35. G. P. Gurinovich, A. N. Sevchenko, and K. N. Solovyev, “Spectroscopy of chlorophyll and allied compounds,” Nauka i Tekhnika. In press.
  36. L. A. Nafie, M. Pézolet, and W. L. Peticolas, “On the origin of the intensity of the resonant raman bands of differing polarization in heme proteins,” Chemical Physics Letters, vol. 20, no. 6, pp. 563–568, 1973. View at Google Scholar · View at Scopus
  37. J. M. Vincent, “Distortion of fungal hyphæ in the presence of certain inhibitors,” Nature, vol. 159, no. 4051, p. 850, 1947. View at Google Scholar · View at Scopus
  38. A. Thiantanawat, B. J. Long, and A. M. Brodie, “Signaling pathways of apoptosis activated by aromatase inhibitors and antiestrogens,” Cancer Research, vol. 63, no. 22, pp. 8037–8050, 2003. View at Google Scholar · View at Scopus
  39. X. Tong, S. Lin, M. Fujii, and D.-X. Hou, “Echinocystic acid induces apoptosis in HL-60 cells through mitochondria-mediated death pathway,” Cancer Letters, vol. 212, no. 1, pp. 21–32, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Scheer and J. J. Katz, “Nuclear magnetic resonance spectroscopy of porphyrins and metalloporphyrins,” in Porphyrins and Metalloporphyrins, K. M. Smith, Ed., p. 399, Elsevier, Amsterdam, The Netherlands, 1975. View at Google Scholar
  41. E. Fagadar-Cosma, C. Enache, I. Armeanu et al., “The influence of pH over topography and spectroscopic properties of silica hybrid materials embedding meso-tetratolylporphyrin,” Materials Research Bulletin, vol. 44, no. 2, pp. 426–431, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Schweiger, M. Goldner, H. Huckstadt, and H. Z. Homborg, “Synthese and Eigen Schaften Von cis Diacid-ophthalocyaninato(2-)thallaton(III); kristallstruktur von Tetra(n-butyl)ammonium-cisdinitro(O,O)-and-cis-dichlorophthalocyaninato(2-)thallat(III),” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 625, no. 10, pp. 1693–1699, 1999. View at Publisher · View at Google Scholar
  43. R. C. Dougherty, in Biochemical Applications of Mass Spectrometry, G. R. Waller, Ed., vol. 6, p. 1288, John Wiley & Sons, New York, NY, USA, 1972.
  44. C. Timiriazeff, “Colourless chlorophyll,” Nature, vol. 32, no. 824, p. 342, 1885. View at Google Scholar · View at Scopus
  45. J.-P. Strachan, S. Gentemann, J. Seth et al., “Effects of orbital ordering on electronic communication in multiporphyrin arrays,” Journal of the American Chemical Society, vol. 119, no. 46, pp. 11191–11201, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Dharmaraj, P. Viswanathamurthi, and K. Natarajan, “Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity,” Transition Metal Chemistry, vol. 26, no. 1-2, pp. 105–109, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Mishra and V. K. Singh, “Co(ll), Ni(ll) and Cu(lI) and Zn(lI) complexes with Schiff bases derived from 2-aminobenzimidazoles and pyrazolycarboxaldehyde,” Indian Journal of Chemistry, vol. 32, p. 446, 1993. View at Google Scholar