Table of Contents Author Guidelines Submit a Manuscript
Bone Marrow Research
Volume 2011, Article ID 924058, 14 pages
http://dx.doi.org/10.1155/2011/924058
Review Article

Antibody-Based Therapies in Multiple Myeloma

Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA

Received 18 October 2010; Accepted 4 January 2011

Academic Editor: Ignazio Majolino

Copyright © 2011 Yu-Tzu Tai and Kenneth C. Anderson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. P. Treon, Y. Shima, M. L. Grossbard et al., “Treatment of multiple myeloma by antibody mediated immunotherapy and induction of myeloma selective antigens,” Annals of Oncology, vol. 11, no. 1, pp. S107–S111, 2000. View at Google Scholar · View at Scopus
  2. C. Gemmel, F. W. Cremer, M. Weis et al., “Anti-CD20 antibody as consolidation therapy in a patient with primary plasma cell leukemia after high-dose therapy and autologous stem cell transplantation,” Annals of Hematology, vol. 81, no. 2, pp. 119–123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Musto, A. M. Carella Jr., M. M. Greco et al., “Short progression-free survival in myeloma patients receiving rituximab as maintenance therapy after autologous transplantation,” British Journal of Haematology, vol. 123, no. 4, pp. 746–747, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. H. Ellis, K. A. Barber, A. Tutt et al., “Engineered anti-CD38 monoclonal antibodies for immunotherapy of multiple myeloma,” Journal of Immunology, vol. 155, no. 2, pp. 925–937, 1995. View at Google Scholar · View at Scopus
  5. N. Zojer, K. Kirchbacher, M. Vesely, W. Hübl, and H. Ludwig, “Rituximab treatment provides no clinical benefit in patients with pretreated advanced multiple myeloma,” Leukemia and Lymphoma, vol. 47, no. 6, pp. 1103–1109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Robillard, H. Avet-Loiseau, R. Garand et al., “CD20 is associated with a small mature plasma cell morphology and t(11;14) in multiple myeloma,” Blood, vol. 102, no. 3, pp. 1070–1071, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Gozzetti, A. Fabbri, S. Lazzi, M. Bocchia, and F. Lauria, “Reply to Rituximab activity in CD20 positive multiple myeloma,” Leukemia, vol. 21, no. 8, pp. 1842–1843, 2007. View at Publisher · View at Google Scholar
  8. S. Hofer, S. Hunziker, S. Dirnhofer, and C. Ludwig, “Rituximab effective in a patient with refractory autoimmune haemolytic anaemia and CD20-negative multiple myeloma,” British Journal of Haematology, vol. 122, no. 4, pp. 690–691, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. C. A. Huff and W. Matsui, “Multiple myeloma cancer stem cells,” Journal of Clinical Oncology, vol. 26, no. 17, pp. 2895–2900, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Hideshima, C. Mitsiades, G. Tonon, P. G. Richardson, and K. C. Anderson, “Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets,” Nature Reviews Cancer, vol. 7, no. 8, pp. 585–598, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Trikha, R. Corringham, B. Klein, and J. F. Rossi, “Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence,” Clinical Cancer Research, vol. 9, no. 13, pp. 4653–4665, 2003. View at Google Scholar · View at Scopus
  12. D. Honemann, M. Chatterjee, R. Savino et al., “The IL-6 receptor antagonist SANT-7 overcomes bone marrow stromal cell-mediated drug resistance of multiple myeloma cells,” International Journal of Cancer, vol. 93, no. 5, pp. 674–680, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Tassone, S. Forciniti, E. Galea et al., “Synergistic induction of growth arrest and apoptosis of human myeloma cells by the IL-6 super-antagonist Sant7 and Dexamethasone,” Cell Death and Differentiation, vol. 7, no. 3, pp. 327–328, 2000. View at Google Scholar · View at Scopus
  14. P. Tassone, E. Galea, S. Forciniti, P. Tagliaferri, and S. Venuta, “The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multiple myeloma cells,” International Journal of Oncology, vol. 21, no. 4, pp. 867–873, 2002. View at Google Scholar · View at Scopus
  15. S. L. Plushner, “Tocilizumab: an interleukin-6 receptor inhibitor for the treatment of rheumatoid arthritis,” Annals of Pharmacotherapy, vol. 42, no. 11, pp. 1660–1668, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Kanda, H. Kawabata, Y. Yamaji et al., “Reversible cardiomyopathy associated with multicentric Castleman diseases: successful treatment with tocilizumab, an anti-interleukin 6 receptor antibody,” International Journal of Hematology, vol. 85, no. 3, pp. 207–211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Nishimoto, “Clinical studies in patients with Castleman's disease, Crohn's disease, and rheumatoid arthritis in Japan,” Clinical Reviews in Allergy and Immunology, vol. 28, no. 3, pp. 221–229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Woo, N. Wilkinson, A. M. Prieur et al., “Open label phase II trial of single, ascending doses of MRA in Caucasian children with severe systemic juvenile idiopathic arthritis: proof of principle of the efficacy of IL-6 receptor blockade in this type of arthritis and demonstration of prolonged clinical improvement,” Arthritis Research & Therapy, vol. 7, no. 6, pp. R1281–R1288, 2005. View at Google Scholar · View at Scopus
  19. N. Yoshio-Hoshino, Y. Adachi, C. Aoki, A. Pereboev, D. T. Curiel, and N. Nishimoto, “Establishment of a new interleukin-6 (IL-6) receptor inhibitor applicable to the gene therapy for IL-6-dependent tumor,” Cancer Research, vol. 67, no. 3, pp. 871–875, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. T. Tai, L. P. Catley, C. S. Mitsiades et al., “Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications,” Cancer Research, vol. 64, no. 8, pp. 2846–2852, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. T. Tai, X. Li, X. Tong et al., “Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma,” Cancer Research, vol. 65, no. 13, pp. 5898–5906, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. C. L. Law, K. A. Gordon, J. Collier et al., “Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal antibody, SGN-40,” Cancer Research, vol. 65, no. 18, pp. 8331–8338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Long, X. Tong, M. Patawaran et al., “Antagonist anti-CD40 antibody CHIR-12.12 causes tumor regression and prolongs survival in multiple myeloma xenograft models,” IMF Oral Presentation and Abstract, no. 3, 2005. View at Google Scholar
  24. W. Bensinger, S. Jagannath, P. S. Becker et al., “A phase 1 dose escalation study of a fully human, antagonist anti-CD40 antibody, HCD 122 (formerly CHIR-12.12), in patients with relapsed and refractory multiple myeloma,” Blood, vol. 108, 2006, abstract no. 3675. View at Google Scholar
  25. M. A. Hussein, J. R. Berenson, R. Niesvizky et al., “Results of a phase I trial of SGN-40 (anti-huCD40 mAb) in patients with relapsed multiple myeloma,” Blood, vol. 108, article 3576, 2006. View at Google Scholar
  26. S. Khubchandani, M. S. Czuczman, and F. J. Hernandez-Ilizaliturri, “Dacetuzumab, a humanized mAb against CD40 for the treatment of hematological malignancies,” Current Opinion in Investigational Drugs, vol. 10, no. 6, pp. 579–587, 2009. View at Google Scholar · View at Scopus
  27. R. Advani, A. Forero-Torres, R. R. Furman et al., “Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin's lymphoma,” Journal of Clinical Oncology, vol. 27, no. 26, pp. 4371–4377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. T. Tai, X. F. Li, L. Catley et al., “Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications,” Cancer Research, vol. 65, no. 24, pp. 11712–11720, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. T. Tai, M. Dillon, W. Song et al., “Anti-CSl humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu,” Blood, vol. 112, no. 4, pp. 1329–1337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. E. D. Hsi, R. Steinle, B. Balasa et al., “CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma,” Clinical Cancer Research, vol. 14, no. 9, pp. 2775–2784, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. T. Tai, E. Soydan, W. Song et al., “CS1 promotes multiple myeloma cell adhesion, clonogenic growth, and tumorigenicity via c-maf-mediated interactions with bone marrow stromal cells,” Blood, vol. 113, no. 18, pp. 4309–4318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. F. van Rhee, S. M. Szmania, M. Dillon et al., “Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma,” Molecular Cancer Therapeutics, vol. 8, no. 9, pp. 2616–2624, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Bensinger, J. Zonder, S. Singhal et al., “Phase I trial of HuLuc63 in multiple myeloma,” Blood, vol. 110, 2007. View at Google Scholar
  34. A. J. Jakubowiak, W. Bensinger, D. Siegel et al., “Phase 1/2 study of elotuzumab in combination with bortezomib in patients with multiple myeloma with one to three prior therapies: interim results,” Blood, vol. 114, article 3876, 2009. View at Google Scholar
  35. S. Lonial, R. Vij, J.-L. Harousseau et al., “Phase 1/2 study of elotuzumab in combination with lenalidomide and low dose dexamethasone in relapsed or refractory multiple myeloma: interim results,” Blood, vol. 114, article 432, 2009. View at Google Scholar
  36. P. Tassone, A. Gozzini, V. Goldmacher et al., “In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2-deacetyl-N2-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells,” Cancer Research, vol. 64, no. 13, pp. 4629–4636, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Chanan-Khan, J. Wolf, M. Gharibo et al., “Phase I study of IMGN901, used as monotherapy, in patients with heavily pre-treated CD56-positive multiple myeloma—a preliminary safety and efficacy analysis,” Blood, vol. 114, article 2883, 2009. View at Google Scholar
  38. F. K. Stevenson, A. J. Bell, R. Cusack et al., “Preliminary studies for an immunotherapeutic approach to the treatment of human myeloma using chimeric anti-CD38 antibody,” Blood, vol. 77, no. 5, pp. 1071–1079, 1991. View at Google Scholar · View at Scopus
  39. G. T. Stevenson, “CD38 as a therapeutic target,” Molecular Medicine, vol. 12, no. 11-12, pp. 345–346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. V. S. Goldmacher, L. A. Bourret, B. A. Levine et al., “Anti-CD38-blocked ricin: an immunotoxin for the treatment of multiple myeloma,” Blood, vol. 84, no. 9, pp. 3017–3025, 1994. View at Google Scholar · View at Scopus
  41. Y. T. Tai, M. de Weers, X. Li et al., “Daratumumab, a novel potent human anti-CD38 monoclonal antibody, induces significant killing of human multiple myeloma cells,” Therapeutic Implication, vol. 114, article 608, 2009. View at Google Scholar
  42. M. Tesar, “Fully human antibody MOR202 against CD38 for the treatment of multiple myeloma and other blood-borne malignancies,” Journal of Clinical Oncology, vol. 25, article 8106, 2007. View at Google Scholar
  43. S. Ozaki, M. Kosaka, S. Wakatsuki, M. Abe, Y. Koishihara, and T. Matsumoto, “Immunotherapy of multiple myeloma with a monoclonal antibody directed against a plasma cell-specific antigen, HM1.24,” Blood, vol. 90, no. 8, pp. 3179–3186, 1997. View at Google Scholar · View at Scopus
  44. A. Matsuda, Y. Suzuki, G. Honda et al., “Large-scale identification and characterization of human genes that activate NF-κB and MAPK signaling pathways,” Oncogene, vol. 22, no. 21, pp. 3307–3318, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Ozaki, M. Kosaka, Y. Wakahara et al., “Humanized anti-HM1.24 antibody mediates myeloma cell cytotoxicity that is enhanced by cytokine stimulation of effector cells,” Blood, vol. 93, no. 11, pp. 3922–3930, 1999. View at Google Scholar · View at Scopus
  46. S. Kawai, Y. Yoshimura, S. I. Iida et al., “Antitumor activity of humanized monoclonal antibody against HM1.24 antigen in human myeloma xenograft models,” Oncology Reports, vol. 15, no. 2, pp. 361–367, 2006. View at Google Scholar · View at Scopus
  47. Y. T. Tai, U. Muchhal, X. Li et al., “XmAb®5592 Fc-engineered humanized anti-HM1.24 monoclonal antibody has potent in vitro and in vivo efficacy against multiple myeloma,” Blood, vol. 114, article 609, 2009. View at Google Scholar
  48. E. Menoret, P. Gomez-Bougie, A. Geffroy-Luseau et al., “Mcl-1L cleavage is involved in TRAIL-R1- and TRAIL-R2-mediated apoptosis induced by HGS-ETR1 and HGS-ETR2 human mAbs in myeloma cells,” Blood, vol. 108, no. 4, pp. 1346–1352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. S. J. Hotte, H. W. Hirte, E. X. Chen et al., “A phase 1 study of mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies,” Clinical Cancer Research, vol. 14, no. 11, pp. 3450–3455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. M. R. Smith, F. Jin, and I. Joshi, “Bortezomib sensitizes non-Hodgkin's lymphoma cells to apoptosis induced by antibodies to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors TRAIL-R1 and TRAIL-R2,” Clinical Cancer Research, vol. 13, no. 18, part 2, pp. 5528s–5534s, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. Z. Berkova, R. H. Tao, and F. Samaniego, “Milatuzumab-a promising new immunotherapeutic agent,” Expert Opinion on Investigational Drugs, vol. 19, no. 1, pp. 141–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Stein, M. J. Mattes, T. M. Cardillo et al., “CD74: a new candidate target for the immunotherapy of B-cell neoplasms,” Clinical Cancer Research, vol. 13, no. 18, part 2, pp. 5556s–5563s, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. J. D. Burton, S. Ely, P. K. Reddy et al., “CD74 is expressed by multiple myeloma and is a promising target for therapy,” Clinical Cancer Research, vol. 10, no. 19, pp. 6606–6611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. K. M. Abdulkadyrov, G. N. Salogub, N. K. Khuazheva et al., “ACE-011, a soluble activin receptor type Iia IgG-Fc fusion protein, increases hemoglobin (Hb) and improves bone lesions in multiple myeloma patients receiving myelosuppressive chemotherapy: preliminary analysis,” Blood, vol. 114, article 749, 2009. View at Google Scholar
  55. R. Stein, M. R. Smith, S. Chen, M. Zalath, and D. M. Goldenberg, “Combining milatuzumab with bortezomib, doxorubicin, or dexamethasone improves responses in multiple myeloma cell lines,” Clinical Cancer Research, vol. 15, no. 8, pp. 2808–2817, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Moreau, J. L. Harousseau, J. Wijdenes, N. Morineau, N. Milpied, and R. Bataille, “A combination of anti-interleukin 6 murine monoclonal antibody with dexamethasone and high-dose melphalan induces high complete response rates in advanced multiple myeloma,” British Journal of Haematology, vol. 109, no. 3, pp. 661–664, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Fulciniti, T. Hideshima, C. Vermot-Desroches et al., “A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma,” Clinical Cancer Research, vol. 15, no. 23, pp. 7144–7152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. H. C. T. van Zaanen, H. M. Lokhorst, L. A. Aarden, H. J. A. M. Rensink, S. O. Warnaar, and M. H. J. van Oers, “Blocking interleukin-6 activity with chimeric anti-IL6 monoclonal antibodies in multiple myeloma: effects on soluble IL6 receptor and soluble gp130,” Leukemia and Lymphoma, vol. 31, no. 5-6, pp. 551–558, 1998. View at Google Scholar · View at Scopus
  59. H. C. T. van Zaanen, H. M. Lokhorst, L. A. Aarden et al., “Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a phase I dose-escalating study,” British Journal of Haematology, vol. 102, no. 3, pp. 783–790, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. P. M. Voorhees, Q. Chen, D. J. Kuhn et al., “Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma,” Clinical Cancer Research, vol. 13, no. 21, pp. 6469–6478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. P. M. Voorhees, Q. Chen, G. W. Small et al., “Targeted inhibition of interleukin-6 with CNTO 328 sensitizes pre-clinical models of multiple myeloma to dexamethasone-mediated cell death,” British Journal of Haematology, vol. 145, no. 4, pp. 481–490, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. E. M. Lewiecki, “RANK ligand inhibition with denosumab for the management of osteoporosis,” Expert Opinion on Biological Therapy, vol. 6, no. 10, pp. 1041–1050, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Terpos, R. Szydlo, J. F. Apperley et al., “Soluble receptor activator of nuclear factor κB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index,” Blood, vol. 102, no. 3, pp. 1064–1069, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Giuliani, R. Bataille, C. Mancini, M. Lazzaretti, and S. Barillé, “Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment,” Blood, vol. 98, no. 13, pp. 3527–3533, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. J. S. Burkiewicz, S. L. Scarpace, and S. P. Bruce, “Denosumab in osteoporosis and oncology,” Annals of Pharmacotherapy, vol. 43, no. 9, pp. 1445–1455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. J. J. Body, T. Facon, R. E. Coleman et al., “A study of the biological receptor activator of nuclear factor-κB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer,” Clinical Cancer Research, vol. 12, no. 4, pp. 1221–1228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Santini, M. E. Fratto, B. Vincenzi et al., “Denosumab: the era of targeted therapies in bone metastatic diseases,” Current Cancer Drug Targets, vol. 9, no. 7, pp. 834–842, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Yaccoby, W. Ling, F. Zhan, R. Walker, B. Barlogie, and J. D. Shaughnessy, “Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo,” Blood, vol. 109, no. 5, pp. 2106–2111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. D. J. Heath, A. D. Chantry, C. H. Buckle et al., “Inhibiting dickkopf-1 (Dkkl) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma,” Journal of Bone and Mineral Research, vol. 24, no. 3, pp. 425–436, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Fulciniti, P. Tassone, T. Hideshima et al., “Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma,” Blood, vol. 114, no. 2, pp. 371–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Lotinun, R. S. Pearsall, M. V. Davies et al., “A soluble activin receptor Type IIA fusion protein (ACE-011) increases bone mass via a dual anabolic-antiresorptive effect in Cynomolgus monkeys,” Bone, vol. 46, no. 4, pp. 1082–1088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Vallet, S. Mukherjee, N. Vaghela et al., “Restoration of bone balance via activin a inhibition results in anti-myeloma activity,” Blood, vol. 114, article 645, 2008. View at Google Scholar
  73. J. Ruckle, M. Jacobs, W. Kramer et al., “Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgGl) in postmenopausal women,” Journal of Bone and Mineral Research, vol. 24, no. 4, pp. 744–752, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Podar and K. C. Anderson, “Inhibition of VEGF signaling pathways in multiple myeloma and other malignancies,” Cell Cycle, vol. 6, no. 5, pp. 538–542, 2007. View at Google Scholar · View at Scopus
  75. N. Ferrara, K. J. Hillan, and W. Novotny, “Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy,” Biochemical and Biophysical Research Communications, vol. 333, no. 2, pp. 328–335, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. D. H. Gorski, M. A. Beckett, N. T. Jaskowiak et al., “Blockade of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation,” Cancer Research, vol. 59, no. 14, pp. 3374–3378, 1999. View at Google Scholar · View at Scopus
  77. R. J. Hoyer, N. Leung, T. E. Witzig, and M. Q. Lacy, “Treatment of diuretic refractory pleural effusions with bevacizumab in four patients with primary systemic amyloidosis,” American Journal of Hematology, vol. 82, no. 5, pp. 409–413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. B. Goldman, “For investigational targeted drugs, combination trials pose challenges,” Journal of the National Cancer Institute, vol. 95, no. 23, pp. 1744–1746, 2003. View at Google Scholar · View at Scopus
  79. A. J. Novak, J. R. Darce, B. K. Arendt et al., “Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival,” Blood, vol. 103, no. 2, pp. 689–694, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Moreaux, E. Legouffe, E. Jourdan et al., “BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone,” Blood, vol. 103, no. 8, pp. 3148–3157, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. T. Tai, X. F. Li, I. Breitkreutz et al., “Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment,” Cancer Research, vol. 66, no. 13, pp. 6675–6682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Moreaux, F. W. Cremer, T. Reme et al., “The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature,” Blood, vol. 106, no. 3, pp. 1021–1030, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. J. R. Darce, B. K. Arendt, X. Wu, and D. F. Jelinek, “Regulated expression of BAFF-binding receptors during human B cell differentiation,” Journal of Immunology, vol. 179, no. 11, pp. 7276–7286, 2007. View at Google Scholar · View at Scopus
  84. J. F. Rossi, J. Moreaux, D. Hose et al., “Atacicept in relapsed/refractory multiple myeloma or active Waldenstrom's macroglobulinemia: a phase I study,” British Journal of Cancer, vol. 101, no. 7, pp. 1051–1058, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Yaccoby, A. Pennisi, X. Li et al., “Atacicept (TACI-Ig) inhibits growth of TACI primary myeloma cells in SCID-hu mice and in coculture with osteoclasts,” Leukemia, vol. 22, no. 2, pp. 406–413, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Neri, S. Kumar, M. T. Fulciniti et al., “Neutralizing B-cell-activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model,” Clinical Cancer Research, vol. 13, no. 19, pp. 5903–5909, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Bellucci, E. P. Alyea, S. Chiaretti et al., “Graft-versus-tumor response in patients with multiple myeloma is associated with antibody response to BCMA, a plasma-cell membrane receptor,” Blood, vol. 105, no. 10, pp. 3945–3950, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. M. C. Ryan, M. Hering, D. Peckham et al., “Antibody targeting of B-cell maturation antigen on malignant plasma cells,” Molecular Cancer Therapeutics, vol. 6, no. 11, pp. 3009–3018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Carlo-Stella, A. Guidetti, M. Di Nicola et al., “IFN-γ enhances the antimyeloma activity of the fully human anti-human leukocyte antigen-DR monoclonal antibody 1D09C3,” Cancer Research, vol. 67, no. 7, pp. 3269–3275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Sekimoto, S. Ozaki, T. Ohshima et al., “A single-chain Fv diabody against human leukocyte antigen—a molecules specifically induces myeloma cell death in the bone marrow environment,” Cancer Research, vol. 67, no. 3, pp. 1184–1192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. I. M. Sainz, I. Isordia-Salas, R. G. Espinola, W. K. Long, R. A. Pixley, and R. W. Colman, “Multiple myeloma in a murine syngeneic model: modulation of growth and angiogenesis by a monoclonal antibody to kininogen,” Cancer Immunology, Immunotherapy, vol. 55, no. 7, pp. 797–807, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. M. S. Zand, T. Vo, T. Pellegrin et al., “Apoptosis and complement-mediated lysis of myeloma cells by polyclonal rabbit antithymocyte globulin,” Blood, vol. 107, no. 7, pp. 2895–2903, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. S. E. Johansson, B. Hejdeman, J. Hinkula et al., “NK cell activation by KIR-binding antibody 1-7F9 and response to HIV-infected autologous cells in viremic and controller HIV-infected patients,” Clinical Immunology, vol. 134, no. 2, pp. 158–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. F. Romagne, P. Andre, P. Spee et al., “Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells,” Blood, vol. 114, no. 13, pp. 2667–2677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. D. M. Benson, F. Romagne, P. Squiban et al., “Novel monoclonal antibody that enhances natural killer (NK) cell cytotoxicity against multiple myeloma (MM): preclinical data and interim phase I clinical trial results,” Journal of Clinical Oncology, vol. 27, no. 15s, 2009, abstract no. 3032. View at Google Scholar