Table of Contents Author Guidelines Submit a Manuscript
Bone Marrow Research
Volume 2011 (2011), Article ID 950934, 9 pages
http://dx.doi.org/10.1155/2011/950934
Research Article

Innovative Analyses Support a Role for DNA Damage and an Aberrant Cell Cycle in Myelodysplastic Syndrome Pathogenesis

1Vanderbilt University Medical Center, Nashville, TN 37232-5310, USA
2Case Comprehensive Cancer Center, Cleveland, OH 44106-5065, USA
3Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
4Esoterix Center for Innovation, Brentwood, TN, USA

Received 15 February 2011; Accepted 13 April 2011

Academic Editor: Peter J. Quesenberry

Copyright © 2011 David R. Head et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Aul, N. Gattermann, and W. Schneider, “Age-related incidence and other epidemiological aspects of myelodysplastic syndromes,” British Journal of Haematology, vol. 82, no. 2, pp. 358–367, 1992. View at Google Scholar · View at Scopus
  2. M. T. Smith, M. S. Linet, and G. J. Morgan, “Causative agents in the etiology of the myelodysplastic syndromes and the acute myeloid leukemias,” in The Myelodysplastic Syndromes, Pathobiology and Clinical Management, John M. Bennett, Ed., pp. 29–63, Marcel Dekker, New York, NY, USA, 2002. View at Google Scholar
  3. C. Schoch, S. Schnittger, W. Kern, M. Dugas, W. Hiddemann, and T. Haferlach, “Acute myeloid leukemia with recurring chromosome abnormalities as defined by the WHO-classification: incidence of subgroups, additional genetic abnormalities, FAB subtypes and age distribution in an unselected series of 1,897 patients with acute myeloid leukemia,” Haematologica, vol. 88, no. 3, pp. 351–353, 2003. View at Google Scholar · View at Scopus
  4. A. Radlund, T. Thiede, S. Hansen, M. Carlsson, and L. Engquist, “Incidence of myelodysplastic syndromes in a Swedish population,” European Journal of Haematology, vol. 54, no. 3, pp. 153–156, 1995. View at Google Scholar · View at Scopus
  5. R. A. Cartwright, R. J. Q. McNally, D. J. Rowland, and J. Thomas, The Descriptive Epidemiology of Leukaemia and Related Conditions in Parts of the United Kingdom 1984–1993, Leukaemia Research Fund, London, UK, 1997.
  6. H. Hasle, G. Kerndrup, and B. B. Jacobsen, “Childhood myelodysplastic syndrome in Denmark: incidence and predisposing conditions,” Leukemia, vol. 9, no. 9, pp. 1569–1572, 1995. View at Google Scholar · View at Scopus
  7. H. Hasle, L. D. Wadsworth, B. G. Massing, M. McBride, and K. R. Schultz, “A population-based study of childhood myelodysplastic syndrome in British Columbia, Canada,” British Journal of Haematology, vol. 106, no. 4, pp. 1027–1032, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Passmore, J. M. Chessells, H. Kempski, I. M. Hann, P. A. Brownbill, and C. A. Stiller, “Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival,” British Journal of Haematology, vol. 121, no. 5, pp. 758–767, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. R. D. Brunning, J. M. Bennett, G. Flandrin et al., “Myelodysplastic syndromes,” in World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues, E. J. H. N. Jaffe, H. Stein, and J. W. Vardiman, Eds., pp. 61–73, IARC Press, Lyon, France, 2001. View at Google Scholar
  10. H. Hasle, C. M. Niemeyer, J. M. Chessells et al., “A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases,” Leukemia, vol. 17, no. 2, pp. 277–282, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. P. Greenberg, C. Cox, M. M. LeBeau et al., “International scoring system for evaluating prognosis in myelodysplastic syndromes,” Blood, vol. 89, no. 6, pp. 2079–2088, 1997. View at Google Scholar · View at Scopus
  12. G. Landberg and G. Roos, “Flow cytometric analysis of proliferation associated nuclear antigens using washless staining of unfixed cells,” Cytometry, vol. 13, no. 3, pp. 230–240, 1992. View at Google Scholar · View at Scopus
  13. T. D. Friedrich, E. Okubo, J. Laffin, and J. M. Lehman, “Okadaic acid induces appearance of the mitotic epitope MPM-2 in SV40-infected CV-1 cells with a >G2-phase DNA content,” Cytometry, vol. 31, no. 4, pp. 260–264, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Endl and J. Gerdes, “Posttranslational modifications of the KI-67 protein coincide with two major checkpoints during mitosis,” Journal of Cellular Physiology, vol. 182, no. 3, pp. 371–380, 2000. View at Google Scholar · View at Scopus
  15. G. T. Stelzer, K. E. Shults, and M. R. Loken, “CD45 gating for routine flow cytometric analysis of human bone marrow specimens,” Annals of the New York Academy of Sciences, vol. 677, pp. 265–280, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. P. J. Smith, N. Blunt, M. Wiltshire et al., “Characteristics of a novel deep red/infrared fluorescent cell-permeant DNA probe, DRAQ5, in intact human cells analyzed by flow cytometry, confocal and multiphoton microscopy,” Cytometry, vol. 40, no. 4, pp. 280–291, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. P. J. Smith, M. Wiltshire, S. Davies, L. H. Patterson, and T. Hoy, “A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry,” Journal of Immunological Methods, vol. 229, no. 1-2, pp. 131–139, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Wiltshire, L. H. Patterson, and P. J. Smith, “A novel deep red/low infrared fluorescent flow cytometric probe, DRAQ5NO, for the discrimination of intact nucleated cells in apoptotic cell populations,” Cytometry, vol. 39, no. 3, pp. 217–223, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. J. W. Jacobberger, R. M. Sramkoski, P. S. Frisa et al., “Immunoreactivity of Stat5 phosphorylated on tyrosine as a cell-based measure of Bcr/Abl kinase activity,” Cytometry—Part A, vol. 54, no. 2, pp. 75–88, 2003. View at Google Scholar · View at Scopus
  20. X. Huang, H. D. Halicka, F. Traganos, T. Tanaka, A. Kurose, and Z. Darzynkiewicz, “Cytometric assessment of DNA damage in relation to cell cycle phase and apoptosis,” Cell Proliferation, vol. 38, no. 4, pp. 223–243, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. X. Huang, M. Okafuji, F. Traganos, E. Luther, E. Holden, and Z. Darzynkiewicz, “Assessment of histone H2AX phosphorylation induced by DNA topoisomerase I and II inhibitors topotecan and mitoxantrone and by the DNA cross-linking agent cisplatin,” Cytometry—Part A, vol. 58, no. 2, pp. 99–110, 2004. View at Google Scholar · View at Scopus
  22. J. E. Parker and G. J. Mufti, “The role of apoptosis in the pathogenesis of the myelodysplastic syndromes,” International Journal of Hematology, vol. 73, no. 4, pp. 416–428, 2001. View at Google Scholar · View at Scopus
  23. A. Riccardi, C. M. Montecucco, M. Danova et al., “Flow cytometric evaluation of proliferative activity and ploidy in myelodysplastic syndromes and acute leukemias,” Basic and Applied Histochemistry, vol. 30, no. 2, pp. 181–192, 1986. View at Google Scholar · View at Scopus
  24. S. W. Peters, R. E. Clark, T. G. Hoy, and A. Jacobs, “DNA content and cell cycle analysis of bone marrow cells in myelodysplastic syndromes (MDS),” British Journal of Haematology, vol. 62, no. 2, pp. 239–245, 1986. View at Google Scholar · View at Scopus
  25. I. M. Jensen, “Myelopoiesis in myelodysplasia evaluated by multiparameter flow cytometry,” Leukemia and Lymphoma, vol. 20, no. 1-2, pp. 17–25, 1995. View at Google Scholar · View at Scopus
  26. A. Raza, S. Mundle, A. Iftikhar et al., “Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis,” American Journal of Hematology, vol. 48, no. 3, pp. 143–154, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Raza, S. Alvi, L. Broady-Robinson et al., “Cell cycle kinetic studies in 68 patients with myelodysplastic syndromes following intravenous iodo- and/or bromodeoxyuridine,” Experimental Hematology, vol. 25, no. 6, pp. 530–535, 1997. View at Google Scholar · View at Scopus
  28. V. Shetty, S. Mundle, S. Alvi et al., “Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes,” Leukemia Research, vol. 20, no. 11-12, pp. 891–900, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Raza, S. Mundle, V. Shetty et al., “Novel insights into the biology of myelodysplastic syndromes: excessive apoptosis and the role of cytokines,” International Journal of Hematology, vol. 63, no. 4, pp. 265–278, 1996. View at Google Scholar · View at Scopus
  30. O. A. Sedelnikova, E. P. Rogakou, I. G. Panyutin, and W. M. Bonner, “Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody,” Radiation Research, vol. 158, no. 4, pp. 486–492, 2002. View at Google Scholar · View at Scopus
  31. E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139,” Journal of Biological Chemistry, vol. 273, no. 10, pp. 5858–5868, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Horibe, M. Takagi, J. Unno et al., “DNA damage check points prevent leukemic transformation in myelodysplastic syndrome,” Leukemia, vol. 21, no. 10, pp. 2195–2198, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. D. B. Kerbauy and H. J. Deeg, “Apoptosis and antiapoptotic mechanisms in the progression of myelodysplastic syndrome,” Experimental Hematology, vol. 35, no. 11, pp. 1739–1746, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus