BioMed Research International

BioMed Research International / 2007 / Article
Special Issue

Biomedical Applications of Colloidal Nanocrystals

View this Special Issue

Research Article | Open Access

Volume 2007 |Article ID 076514 | https://doi.org/10.1155/2007/76514

Ian D. Tomlinson, Hélène A. Gussin, Deborah M. Little, Michael R. Warnement, Haohua Qian, David R. Pepperberg, Sandra J. Rosenthal, "Imaging GABAc Receptors with Ligand-Conjugated Quantum Dots", BioMed Research International, vol. 2007, Article ID 076514, 9 pages, 2007. https://doi.org/10.1155/2007/76514

Imaging GABAc Receptors with Ligand-Conjugated Quantum Dots

Academic Editor: Marek Osinski
Received14 May 2007
Revised30 Aug 2007
Accepted21 Dec 2007
Published17 Apr 2008

Abstract

We report a methodology for labeling the GABAc receptor on the surface membrane of intact cells. This work builds upon our earlier work with serotonin-conjugated quantum dots and our studies with PEGylated quantum dots to reduce nonspecific binding. In the current approach, a PEGylated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphilic polymer derivative of a modified polyacrylamide. These conjugates were used to image GABAC receptors heterologously expressed in Xenopus laevis oocytes.

References

  1. A. Watson, X. Wu, and M. Bruchez, “Lighting up cells with quantum dots,” BioTechniques, vol. 34, no. 2, pp. 296–303, 2003. View at: Google Scholar
  2. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chemistry of Materials, vol. 15, no. 14, pp. 2854–2860, 2003. View at: Publisher Site | Google Scholar
  3. A. Striolo, J. Ward, J. M. Prausnitz et al., “Molecular weight, osmotic second virial coefficient, and extinction coefficient of colloidal CdSe nanocrystals,” Journal of Physical Chemistry B, vol. 106, no. 21, pp. 5500–5505, 2002. View at: Publisher Site | Google Scholar
  4. J. M. Tsay, M. Pflughoefft, L. A. Bentolila, and S. Weiss, “Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals,” Journal of the American Chemical Society, vol. 126, no. 7, pp. 1926–1927, 2004. View at: Publisher Site | Google Scholar
  5. J. Zheng, J. T. Petty, and R. M. Dickson, “High quantum yield blue emission from water-soluble Au8 nanodots,” Journal of the American Chemical Society, vol. 125, no. 26, pp. 7780–7781, 2003. View at: Publisher Site | Google Scholar
  6. P. Yang, M. Lü, D. Xü, D. Yuan, and G. Zhou, “Photoluminescence properties of ZnS nanoparticles co-doped with Pb2+ and Cu2+,” Chemical Physics Letters, vol. 336, no. 1-2, pp. 76–80, 2001. View at: Publisher Site | Google Scholar
  7. A. Agostiano, M. Catalano, M. L. Curri, M. Della Monica, L. Manna, and L. Vasanelli, “Synthesis and structural characterisation of CdS nanoparticles prepared in a four-components “water-in-oil” microemulsion,” Micron, vol. 31, no. 3, pp. 253–258, 2000. View at: Publisher Site | Google Scholar
  8. A. Schroedter, H. Weller, R. Eritja, W. E. Ford, and J. M. Wessels, “Biofunctionalization of silica-coated CdTe and gold nanocrystals,” Nano Letters, vol. 2, no. 12, pp. 1363–1367, 2002. View at: Publisher Site | Google Scholar
  9. J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Letters, vol. 6, no. 7, pp. 1496–1501, 2006. View at: Publisher Site | Google Scholar
  10. M. Bäumle, D. Stamou, J.-M. Segura, R. Hovius, and H. Vogel, “Highly fluorescent streptavidin-coated CdSe nanoparticles: preparation in water, characterization, and micropatterning,” Langmuir, vol. 20, no. 10, pp. 3828–3831, 2004. View at: Publisher Site | Google Scholar
  11. X. Gao, L. Yang, J.A. Petros, J.W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Current Opinion in Biotechnology, vol. 16, no. 1, pp. 63–72, 2005. View at: Google Scholar
  12. A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals,” Journal of Physical Chemistry, vol. 100, no. 1, pp. 13226–13239, 1996. View at: Publisher Site | Google Scholar
  13. C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” Journal of the American Chemical Society, vol. 115, no. 19, pp. 8706–8715, 1993. View at: Publisher Site | Google Scholar
  14. M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” Journal of Physical Chemistry, vol. 100, no. 2, pp. 468–471, 1996. View at: Publisher Site | Google Scholar
  15. W. Cai, D.-W. Shin, K. Chen et al., “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects,” Nano Letters, vol. 6, no. 4, pp. 669–676, 2006. View at: Publisher Site | Google Scholar
  16. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, vol. 281, no. 5385, pp. 2013–2016, 1998. View at: Publisher Site | Google Scholar
  17. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, vol. 281, no. 5385, pp. 2016–2018, 1998. View at: Publisher Site | Google Scholar
  18. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science, vol. 298, no. 5599, pp. 1759–1762, 2002. View at: Publisher Site | Google Scholar
  19. D. Gerion, F. Pinaud, S. C. Williams et al., “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” Journal of Physical Chemistry B, vol. 105, no. 37, pp. 8861–8871, 2001. View at: Publisher Site | Google Scholar
  20. T. M. Jovin, “Quantum dots finally come of age,” Nature Biotechnology, vol. 21, no. 1, pp. 32–33, 2003. View at: Publisher Site | Google Scholar
  21. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nature Biotechnology, vol. 22, no. 8, pp. 969–976, 2004. View at: Publisher Site | Google Scholar
  22. X. Wu, H. Liu, J. Liu et al., “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nature Biotechnology, vol. 21, no. 1, pp. 41–46, 2003. View at: Publisher Site | Google Scholar
  23. E. L. Bentzen, I. D. Tomlinson, J. N. Mason et al., “Surface modification to reduce nonspecific binding of quantum dots in live cell assays,” Bioconjugate Chemistry, vol. 16, no. 6, pp. 1488–1494, 2005. View at: Publisher Site | Google Scholar
  24. Z. Chunyang, M. Hui, D. Yao, J. Lei, C. Dieyan, and N. Shuming, “Quantum dot-labeled trichosanthin,” The Analyst, vol. 125, no. 6, pp. 1029–1031, 2000. View at: Publisher Site | Google Scholar
  25. O. Minet, C. Dressler, and J. Beuthan, “Heat stress induced redistribution of fluorescent quantum dots in breast tumor cells,” Journal of Fluorescence, vol. 14, no. 3, pp. 241–247, 2004. View at: Publisher Site | Google Scholar
  26. M. Howarth, K. Takao, Y. Hayashi, and A. Y. Ting, “Targeting quantum dots to surface proteins in living cells with biotin ligase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 21, pp. 7583–7588, 2005. View at: Publisher Site | Google Scholar
  27. M. Howarth, D. J.-F. Chinnapen, K. Gerrow et al., “A monovalent streptavidin with a single femtomolar biotin binding site,” Nature Methods, vol. 3, no. 4, pp. 267–273, 2006. View at: Publisher Site | Google Scholar
  28. M.-V. Ehrensperger, C. Hanus, C. Vannier, A. Triller, and M. Dahan, “Multiple association states between glycine receptors and gephyrin identified by SPT analysis,” Biophysical Journal, vol. 92, no. 10, pp. 3706–3718, 2007. View at: Publisher Site | Google Scholar
  29. I. L. Medintz and J. R. Deschamps, “Maltose-binding protein: a versatile platform for prototyping biosensing,” Current Opinion in Biotechnology, vol. 17, no. 1, pp. 17–27, 2006. View at: Publisher Site | Google Scholar
  30. A. Månsson, M. Sundberg, M. Balaz et al., “In vitro sliding of actin filaments labelled with single quantum dots,” Biochemical and Biophysical Research Communications, vol. 314, no. 2, pp. 529–534, 2004. View at: Publisher Site | Google Scholar
  31. S. Le Gac, I. Vermes, and A. van den Berg, “Quantum dots based probes conjugated to annexin V for photostable apoptosis detection and imaging,” Nano Letters, vol. 6, no. 9, pp. 1863–1869, 2006. View at: Publisher Site | Google Scholar
  32. M. E. Åkerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, “Nanocrystal targeting in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 12617–12621, 2002. View at: Publisher Site | Google Scholar
  33. D. S. Lidke, P. Nagy, R. Heintzmann et al., “Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction,” Nature Biotechnology, vol. 22, no. 2, pp. 198–203, 2004. View at: Publisher Site | Google Scholar
  34. I. D. Tomlinson, J. N. Mason, R. D. Blakely, and S. J. Rosenthal, “Peptide-conjugated quantum dots: imaging the angiotensin type 1 receptor in living cells,” Methods in Molecular Biology, vol. 303, pp. 51–60, 2005. View at: Google Scholar
  35. P. Alivisatos, “The use of nanocrystals in biological detection,” Nature Biotechnology, vol. 22, no. 1, pp. 47–52, 2004. View at: Publisher Site | Google Scholar
  36. F. Patolsky, R. Gill, Y. Weizmann, T. Mokari, U. Banin, and I. Wiliner, “Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots,” Journal of the American Chemical Society, vol. 125, no. 46, pp. 13918–13919, 2003. View at: Publisher Site | Google Scholar
  37. D. Gerion, W. J. Parak, S. C. Williams, D. Zanchet, C. M. Micheel, and A. P. Alivisatos, “Sorting fluorescent nanocrystals with DNA,” Journal of the American Chemical Society, vol. 124, no. 24, pp. 7070–7074, 2002. View at: Publisher Site | Google Scholar
  38. Y. Xiao and P. E. Barker, “Semiconductor nanocrystal probes for human metaphase chromosomes,” Nucleic Acids Research, vol. 32, no. 3, p. e28, 2004. View at: Publisher Site | Google Scholar
  39. W. J. Parak, D. Gerion, D. Zanchet et al., “Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots,” Chemistry of Materials, vol. 14, no. 5, pp. 2113–2119, 2002. View at: Publisher Site | Google Scholar
  40. C. Srinivasan, J. Lee, F. Papadimitrakopoulos, L. K. Silbart, M. Zhao, and D. J. Burgess, “Labeling and intracellular tracking of functionally active plasmid DNA with semiconductor quantum dots,” Molecular Therapy, vol. 14, no. 2, pp. 192–201, 2006. View at: Publisher Site | Google Scholar
  41. E. Tholouli, J. A. Hoyland, D. Di Vizio et al., “Imaging of multiple mRNA targets using quantum dot based in situ hybridization and spectral deconvolution in clinical biopsies,” Biochemical and Biophysical Research Communications, vol. 348, no. 2, pp. 628–636, 2006. View at: Publisher Site | Google Scholar
  42. C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nature Materials, vol. 4, no. 11, pp. 826–831, 2005. View at: Publisher Site | Google Scholar
  43. A. Fu, C. M. Micheel, J. Cha, H. Chang, H. Yang, and A. P. Alivisatos, “Discrete nanostructures of quantum dots/Au with DNA,” Journal of the American Chemical Society, vol. 126, no. 35, pp. 10832–10833, 2004. View at: Publisher Site | Google Scholar
  44. W. B. Tan, S. Jiang, and Y. Zhang, “Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference,” Biomaterials, vol. 28, no. 8, pp. 1565–1571, 2007. View at: Publisher Site | Google Scholar
  45. R. Chakrabarti and A. M. Klibanov, “Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection,” Journal of the American Chemical Society, vol. 125, no. 41, pp. 12531–12540, 2003. View at: Publisher Site | Google Scholar
  46. S. Bryde, I. Grunwald, A. Hammer et al., “Tumor necrosis factor (TNF)-functionalized nanostructured particles for the stimulation of membrane TNF-specific cell responses,” Bioconjugate Chemistry, vol. 16, no. 6, pp. 1459–1467, 2005. View at: Publisher Site | Google Scholar
  47. M. Manchester and P. Singh, “Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging,” Advanced Drug Delivery Reviews, vol. 58, no. 14, pp. 1505–1522, 2006. View at: Publisher Site | Google Scholar
  48. L. Dyadyusha, H. Yin, S. Jaiswal et al., “Quenching of CdSe quantum dot emission, a new approach for biosensing,” Chemical Communications, no. 25, pp. 3201–3203, 2005. View at: Publisher Site | Google Scholar
  49. E. R. Goldman, A. R. Clapp, G. P. Anderson et al., “Multiplexed toxin analysis using four colors of quantum dot fluororeagents,” Analytical Chemistry, vol. 76, no. 3, pp. 684–688, 2004. View at: Publisher Site | Google Scholar
  50. M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science, vol. 302, no. 5644, pp. 442–445, 2003. View at: Publisher Site | Google Scholar
  51. J. N. Mason, H. Farmer, I. D. Tomlinson et al., “Novel fluorescence-based approaches for the study of biogenic amine transporter localization, activity, and regulation,” Journal of Neuroscience Methods, vol. 143, no. 1, pp. 3–25, 2005. View at: Publisher Site | Google Scholar
  52. B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, “Noninvasive imaging of quantum dots in mice,” Bioconjugate Chemistry, vol. 15, no. 1, pp. 79–86, 2004. View at: Publisher Site | Google Scholar
  53. S. Kim, Y. T. Lim, E. G. Soltesz et al., “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nature Biotechnology, vol. 22, no. 1, pp. 93–97, 2004. View at: Publisher Site | Google Scholar
  54. C. Bouzigues, M. Morel, A. Triller, and M. Dahan, “Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 27, pp. 11251–11256, 2007. View at: Publisher Site | Google Scholar
  55. S. J. Rosenthal, I. D. Tomlinson, E. M. Adkins et al., “Targeting cell surface receptors with ligand-conjugated nanocrystals,” Journal of the American Chemical Society, vol. 124, no. 17, pp. 4586–4594, 2002. View at: Publisher Site | Google Scholar
  56. I. D. Tomlinson, A. P. Gies, P. J. Gresch et al., “Universal polyethylene glycol linkers for attaching receptor ligands to quantum dots,” Bioorganic & Medicinal Chemistry Letters, vol. 16, no. 24, pp. 6262–6266, 2006. View at: Publisher Site | Google Scholar
  57. I. D. Tomlinson, J. L. Grey, and S. J. Rosenthal, “A synthesis of 6-(2,5-dimethoxy-4-(2-aminopropyl)phenyl)-hexylthiol. A ligand for conjugation with fluorescent cadmium selenide/zinc sulfide core/shell nanocrystals and biological imaging,” Molecules, vol. 7, no. 11, pp. 777–790, 2002. View at: Google Scholar
  58. I. D. Tomlinson, J. Mason, J. N. Burton, R. Blakely, and S. J. Rosenthal, “The design and synthesis of novel derivatives of the dopamine uptake inhibitors GBR 12909 and GBR 12935. High-affinity dopaminergic ligands for conjugation with highly fluorescent cadmium selenide/zinc sulfide core/shell nanocrystals,” Tetrahedron, vol. 59, no. 40, pp. 8035–8047, 2003. View at: Publisher Site | Google Scholar
  59. I. D. Tomlinson, J. N. Mason, R. D. Blakely, and S. J. Rosenthal, “Inhibitors of the serotonin transporter protein (SERT): the design and synthesis of biotinylated derivatives of 3-(1,2,3,6-tetrahydro-pyridin-4-yl)-1H- indoles. High-affinity serotonergic ligands for conjugation with quantum dots,” Bioorganic & Medicinal Chemistry Letters, vol. 15, no. 23, pp. 5307–5310, 2005. View at: Publisher Site | Google Scholar
  60. I. D. Tomlinson, J. N. Mason, R. D. Blakely, and S. J. Rosenthal, “High affinity inhibitors of the dopamine transporter (DAT): novel biotinylated ligands for conjugation to quantum dots,” Bioorganic & Medicinal Chemistry Letters, vol. 16, no. 17, pp. 4664–4667, 2006. View at: Publisher Site | Google Scholar
  61. J. N. Mason, I. D. Tomlinson, S. J. Rosenthal, and R. D. Blakely, “Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates,” Methods in Molecular Biology, vol. 303, pp. 35–50, 2005. View at: Google Scholar
  62. I. D. Tomlinson, T. Kippeny, L. Swafford, N. H. Siddiqui, and S. J. Rosenthal, “Novel polyethylene glycol derivatives of melatonin and serotonin. Ligands for conjugation to fluorescent cadmium selenide/zinc sulfide core shell nanocrystals,” Journal of Chemical Research, vol. 2002, no. 5, pp. 203–204, 2002. View at: Google Scholar
  63. A. Wolcott, D. Gerion, M. Visconte et al., “Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins,” Journal of Physical Chemistry B, vol. 110, no. 11, pp. 5779–5789, 2006. View at: Publisher Site | Google Scholar
  64. E. R. Goldman, G. P. Anderson, P. T. Tran, H. Mattoussi, P. T. Charles, and J. M. Mauro, “Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays,” Analytical Chemistry, vol. 74, no. 4, pp. 841–847, 2002. View at: Publisher Site | Google Scholar
  65. H. A. Gussin, I. D. Tomlinson, D. M. Little et al., “Binding of muscimol-conjugated quantum dots to GABAC receptors,” Journal of the American Chemical Society, vol. 128, no. 49, pp. 15701–15713, 2006. View at: Publisher Site | Google Scholar
  66. M. Frey and V. Jäger, “Synthesis of N-substituted muscimol derivatives including N-glycylmuscimol,” Synthesis, vol. 1985, no. 12, pp. 1100–1104, 1985. View at: Publisher Site | Google Scholar
  67. H. Qian, J. E. Dowling, and H. Ripps, “Molecular and pharmacological properties of GABA-ρ subunits from white perch retina,” Journal of Neurobiology, vol. 37, no. 2, pp. 305–320, 1998. View at: Publisher Site | Google Scholar
  68. T. Q. Vu, S. Chowdhury, N. J. Muni, H. Qian, R. F. Standaert, and D. R. Pepperberg, “Activation of membrane receptors by a neurotransmitter conjugate designed for surface attachment,” Biomaterials, vol. 26, no. 14, pp. 1895–1903, 2005. View at: Publisher Site | Google Scholar

Copyright © 2007 Ian D. Tomlinson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views188
Downloads558
Citations

Related articles

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.