Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2007, Article ID 79169, 6 pages
http://dx.doi.org/10.1155/2007/79169
Research Article

Time-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors

1Physikalische Chemie, Institut für Chemie und Interdisziplinäres Zentrum für Photonik, Universität Potsdam, Karl-Liebknecht-Straße 24-25, Potsdam-Golm 14476, Germany
2Laboratoire de Chimie Moléculaire, Ecole Européenne de Chimie, Polymères, Matériaux (ECPM), UMR 7509 CNRS, 25 rue Becquerel, 67087 Strasbourg Cedex, France

Received 2 April 2007; Accepted 16 July 2007

Academic Editor: Marek Osinski

Copyright © 2007 Niko Hildebrandt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec et al., “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” Journal of Physical Chemistry B, vol. 101, no. 46, pp. 9463–9475, 1997. View at Publisher · View at Google Scholar
  2. D. Gerion, F. Pinaud, S. C. Williams et al., “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” Journal of Physical Chemistry B, vol. 105, no. 37, pp. 8861–8871, 2001. View at Publisher · View at Google Scholar
  3. M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” Journal of Physical Chemistry, vol. 100, no. 2, pp. 468–471, 1996. View at Publisher · View at Google Scholar
  4. A. R. Kortan, R. Hull, R. L. Opila et al., “Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media,” Journal of the American Chemical Society, vol. 112, no. 4, pp. 1327–1332, 1990. View at Publisher · View at Google Scholar
  5. W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, vol. 281, no. 5385, pp. 2016–2018, 1998. View at Publisher · View at Google Scholar
  6. W. J. Parak, D. Gerion, D. Zanchet et al., “Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots,” Chemistry of Materials, vol. 14, no. 5, pp. 2113–2119, 2002. View at Publisher · View at Google Scholar
  7. P. T. Tran, E. R. Goldman, G. P. Anderson, J. M. Mauro, and H. Mattoussi, “Use of luminescent CdSe-ZnS nanocrystal bioconjugates in quantum dot-based nanosensors,” Physica Status Solidi (B), vol. 229, no. 1, pp. 427–432, 2002. View at Publisher · View at Google Scholar
  8. S. P. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Letters, vol. 2, no. 8, pp. 817–822, 2002. View at Publisher · View at Google Scholar
  9. W. Z. Guo, J. J. Li, Y. A. Wang, and X. G. Peng, “Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging,” Chemistry of Materials, vol. 15, no. 16, pp. 3125–3133, 2003. View at Publisher · View at Google Scholar
  10. R. M. Clegg, “Fluorescence resonance energy transfer,” in Fluorescence Imaging Spectroscopy and Microscopy, X. F. Wang and B. Herman, Eds., pp. 179–252, John Wiley & Sons, New York, NY, USA, 1996. View at Google Scholar
  11. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum, New York, NY, USA, 2nd edition, 1999.
  12. B. W. van der Meer, G. Coker, and S. Y. S. Chen, Resonance Energy Transfer: Theory and Data, VCH, New York, NY, USA, 1994.
  13. A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, “Can luminescent quantum dots be efficient energy acceptors with organic dye donors?” Journal of the American Chemical Society, vol. 127, no. 4, pp. 1242–1250, 2005. View at Publisher · View at Google Scholar
  14. M.-K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, “Self-illuminating quantum dot conjugates for in vivo imaging,” Nature Biotechnology, vol. 24, no. 3, pp. 339–343, 2006. View at Publisher · View at Google Scholar
  15. Y. Zhang, M.-K. So, A. M. Loening, H. Q. Yao, S. S. Gambhir, and J. H. Rao, “HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots,” Angewandte Chemie International Edition, vol. 45, no. 30, pp. 4936–4940, 2006. View at Publisher · View at Google Scholar
  16. N. Hildebrandt, L. J. Charbonnière, M. Beck, R. F. Ziessel, and H.-G. Löhmannsröben, “Quantum dots as efficient energy acceptors in a time-resolved fluoroimmunoassay,” Angewandte Chemie International Edition, vol. 44, no. 46, pp. 7612–7615, 2005. View at Publisher · View at Google Scholar
  17. L. J. Charbonnière, N. Hildebrandt, R. F. Ziessel, and H.-G. Löhmannsröben, “Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy,” Journal of the American Chemical Society, vol. 128, no. 39, pp. 12800–12809, 2006. View at Publisher · View at Google Scholar
  18. Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Annalen der Physik, vol. 437, no. 1-2, pp. 55–75, 1948. View at Publisher · View at Google Scholar
  19. K. Enomoto, T. Nagasaki, A. Yamauchi et al., “Development of high-throughput spermidine synthase activity assay using homogeneous time-resolved fluorescence,” Analytical Biochemistry, vol. 351, no. 2, pp. 229–240, 2006. View at Publisher · View at Google Scholar
  20. M. Gabourdes, V. Bourgine, G. Mathis, H. Bazin, and B. Alpha-Bazin, “A homogeneous time-resolved fluorescence detection of telomerase activity,” Analytical Biochemistry, vol. 333, no. 1, pp. 105–113, 2004. View at Publisher · View at Google Scholar
  21. G. Mathis, “Rare earth cryptates and homogeneous fluoroimmunoassays with human sera,” Clinical Chemistry, vol. 39, no. 9, pp. 1953–1959, 1993. View at Google Scholar
  22. N. Hildebrandt, Lanthanides and quantum dots: time-resolved laser spectroscopy of biochemical Förster resonance energy transfer (FRET) systems, Dissertation, Universität Potsdam, Potsdam, Germany, 2006.
  23. A. Loosli, U. E. Rusbandi, J. Gradinaru et al., “(Strept)avidin as host for biotinylated coordination complexes: stability, chiral discrimination, and cooperativity,” Inorganic Chemistry, vol. 45, no. 2, pp. 660–668, 2006. View at Publisher · View at Google Scholar
  24. B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH, New York, NY, USA, 2002.
  25. M. Xiao and P. R. Selvin, “Quantum yields of luminescent lanthanide chelates and far-red dyes measured by resonance energy transfer,” Journal of the American Chemical Society, vol. 123, no. 29, pp. 7067–7073, 2001. View at Publisher · View at Google Scholar
  26. N. Weibel, L. J. Charbonnière, M. Guardigli, A. Roda, and R. Ziessel, “Engineering of highly luminescent lanthanide tags suitable for protein labeling and time-resolved luminescence imaging,” Journal of the American Chemical Society, vol. 126, no. 15, pp. 4888–4896, 2004. View at Publisher · View at Google Scholar