Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2008, Article ID 165730, 9 pages
http://dx.doi.org/10.1155/2008/165730
Research Article

Influence of Muscle-Tendon Wrapping on Calculations of Joint Reaction Forces in the Equine Distal Forelimb

1Department of Mechanical and Manufacturing Engineering, Melbourne School of Engineering, The University of Melbourne, VIC 3010, Australia
2Department of Veterinary Clinic and Hospital, Faculty of Veterinary Science, The University of Melbourne, VIC 3030, Australia

Received 14 September 2007; Accepted 24 December 2007

Academic Editor: Daniel Howard

Copyright © 2008 Jonathan S. Merritt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Bowker, P. J. Atkinson, T. S. Atkinson, and R. C. Haut, “Effect of contact stress in bones of the distal interphalangeal joint on microscopic changes in articular cartilage and ligaments,” American Journal of Veterinary Research, vol. 62, no. 3, pp. 414–424, 2001. View at Publisher · View at Google Scholar
  2. C. E. Kawcak, C. W. McIlwraith, R. W. Norrdin, R. D. Park, and P. S. Steyn, “Clinical effects of exercise on subchondral bone of carpal and metacarpophalangeal joints in horses,” American Journal of Veterinary Research, vol. 61, no. 10, pp. 1252–1258, 2000. View at Publisher · View at Google Scholar
  3. M. P. McGuigan and A. M. Wilson, “The effect of bilateral palmar digital nerve analgesia on the compressive force experienced by the navicular bone in horses with navicular disease,” Equine Veterinary Journal, vol. 33, no. 2, pp. 166–171, 2001. View at Publisher · View at Google Scholar
  4. A. M. Wilson, M. P. McGuigan, L. Fouracre, and L. MacMahon, “The force and contact stress on the navicular bone during trot locomotion in sound horses and horses with navicular disease,” Equine Veterinary Journal, vol. 33, no. 2, pp. 159–165, 2001. View at Google Scholar
  5. S. S. Le Jeune, M. H. Macdonald, S. M. Stover, K. T. Taylor, and M. Gerdes, “Biomechanical investigation of the association between suspensory ligament injury and lateral condylar fracture in thoroughbred racehorses,” Veterinary Surgery, vol. 32, no. 6, pp. 585–597, 2003. View at Publisher · View at Google Scholar
  6. E. Eliashar, M. P. McGuigan, K. A. Rogers, and A. M. Wilson, “A comparison of three horseshoeing styles on the kinetics of breakover in sound horses,” Equine Veterinary Journal, vol. 34, no. 2, pp. 184–190, 2002. View at Publisher · View at Google Scholar
  7. E. Eliashar, M. P. McGuigan, and A. M. Wilson, “Relationship of foot conformation and force applied to the navicular bone of sound horses at the trot,” Equine Veterinary Journal, vol. 36, no. 5, pp. 431–435, 2004. View at Publisher · View at Google Scholar
  8. M. A. Willemen, H. H. C. M. Savelberg, and A. Barneveld, “The effect of orthopaedic shoeing on the force exerted by the deep digital flexor tendon on the navicular bone in horses,” Equine Veterinary Journal, vol. 31, no. 1, pp. 25–30, 1999. View at Google Scholar
  9. A. A. Biewener, J. Thomason, A. Goodship, and L. E. Lanyon, “Bone stress in the horse forelimb during locomotion at different gaits: a comparison of two experimental methods,” Journal of Biomechanics, vol. 16, no. 8, pp. 565–576, 1983. View at Publisher · View at Google Scholar
  10. J. J. Thomason, “The relationship of structure to mechanical function in the third metacarpal bone of the horse, Equus caballus,” Canadian Journal of Zoology, vol. 63, no. 6, pp. 1420–1428, 1985. View at Google Scholar
  11. C. Degueurce, H. Chateau, H. Jerbi et al., “Three-dimensional kinematics of the proximal interphalangeal joint: effects of raising the heels or the toe,” Equine Veterinary Journal. Supplement, no. 33, pp. 79–83, 2001. View at Google Scholar
  12. J. H. Challis, “A procedure for determining rigid body transformation parameters,” Journal of Biomechanics, vol. 28, no. 6, pp. 733–737, 1995. View at Publisher · View at Google Scholar
  13. W. Back and H. Clayton, Eds., Equine Locomotion, W. Back and H. Clayton, Eds., W.B. Saunders, Philadelphia, Pa, USA, 2000.
  14. H. H. F. Buchner, H. H. C. M. Savelberg, H. C. Schamhardt, and A. Barneveld, “Inertial properties of Dutch Warmblood horses,” Journal of Biomechanics, vol. 30, no. 6, pp. 653–658, 1997. View at Publisher · View at Google Scholar
  15. L. S. Meershoek, A. J. van den Bogert, and H. C. Schamhardt, “Model formulation and determination of in vitro parameters of a noninvasive method to calculate flexor tendon forces in the equine forelimb,” American Journal of Veterinary Research, vol. 62, no. 10, pp. 1585–1593, 2001. View at Publisher · View at Google Scholar
  16. N. A. T. Brown, M. G. Pandy, W. L. Buford, C. E. Kawcak, and C. W. McIlwraith, “Moment arms about the carpal and metacarpophalangeal joints for flexor and extensor muscles in equine forelimbs,” American Journal of Veterinary Research, vol. 64, no. 3, pp. 351–357, 2003. View at Publisher · View at Google Scholar
  17. K. M. Dyce, W. O. Sack, and C. J. G. Wensing, Textbook of Veterinary Anatomy, W.B. Saunders, Philadelphia, Pa, USA, 1987.
  18. E. J. Parente, D. W. Richardson, and P. Spencer, “Basal sesamoidean fractures in horses: 57 cases (1980–1991),” Journal of the American Veterinary Medical Association, vol. 202, no. 8, pp. 1293–1297, 1993. View at Google Scholar
  19. L. S. Meershoek and J. L. Lanovaz, “Sensitivity analysis and application to trotting of a noninvasive method to calculate flexor tendon forces in the equine forelimb,” American Journal of Veterinary Research, vol. 62, no. 10, pp. 1594–1598, 2001. View at Publisher · View at Google Scholar
  20. A. J. van den Bogert, Computer simulation of locomotion in the horse, Ph.D. thesis, The University of Utrecht, Utrecht, The Netherlands, 1989.
  21. H. M. Clayton, J. L. Lanovaz, H. C. Schamhardt, M. A. Willemen, and G. R. Colborne, “Net joint moments and powers in the equine forelimb during the stance phase of the trot,” Equine Veterinary Journal, vol. 30, no. 5, pp. 384–389, 1998. View at Google Scholar
  22. G. R. Colborne, J. L. Lanovaz, E. J. Sprigings, H. C. Schamhardt, and H. M. Clayton, “Forelimb joint moments and power during the walking stance phase of horses,” American Journal of Veterinary Research, vol. 59, no. 5, pp. 609–614, 1998. View at Google Scholar
  23. H. F. Schryver, D. L. Bartel, N. Langrana, and J. E. Lowe, “Locomotion in the horse: kinematics and external and internal forces in the normal equine digit in the walk and trot,” American Journal of Veterinary Research, vol. 39, no. 11, pp. 1728–1733, 1978. View at Google Scholar
  24. J. L. Lanovaz and H. M. Clayton, “Sensitivity of forelimb swing phase inverse dynamics to inertial parameter errors,” Equine Veterinary Journal. Supplement, no. 33, pp. 27–31, 2001. View at Google Scholar
  25. M. O. Jansen, A. J. van den Bogert, D. J. Riemersma, and H. C. Schamhardt, “In vivo tendon forces in the forelimb of ponies at the walk, validated by ground reaction force measurements,” Acta Anatomica, vol. 146, no. 2-3, pp. 162–167, 1993. View at Google Scholar