Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2009, Article ID 128627, 10 pages
http://dx.doi.org/10.1155/2009/128627
Research Article

Experimental Study of the Effects of Marrow Mesenchymal Stem Cells Transfected with Hypoxia-Inducible Factor-1 Gene

1Department of Cardiothoracic Surgery, Second Xiangya Hospital, Central South University, Hunan, Changsha 410011, China
2Department of Cardiothoracic Surgery, Hunan Children's Hospital, Hunan, Changsha 410007, China
3Department of General Surgery, Human Provincial People's Hospital, Hunan, Changsha 410005, China

Received 11 February 2009; Revised 9 April 2009; Accepted 15 April 2009

Academic Editor: Omar Benzakour

Copyright © 2009 Jinfu Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Haizheng and G. Jihong, “Epidemiology and primary prevention of coronary artery disease,” Chinese Journal of Practical Internal Medicine, vol. 22, no. 8, pp. 449–451, 2002. View at Google Scholar
  2. J. Kastrup, E. Jørgensen, A. Rück et al., “Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris: a randomized double-blind placebo-controlled study: the Euroinject One trial,” Journal of the American College of Cardiology, vol. 45, no. 7, pp. 982–988, 2005. View at Publisher · View at Google Scholar
  3. R. S. Ripa, Y. Wang, E. Jørgensen, H. E. Johnsen, B. Hesse, and J. Kastrup, “Intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte-colony stimulating factor to induce angiogenesis in patients with severe chronic ischaemic heart disease,” European Heart Journal, vol. 27, no. 15, pp. 1785–1792, 2006. View at Publisher · View at Google Scholar
  4. M. Kido, L. Du, C. C. Sullivan et al., “Hypoxia-inducible factor 1-a reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse,” Journal of the American College of Cardiology, vol. 46, no. 11, pp. 2116–2124, 2005. View at Publisher · View at Google Scholar
  5. S. H. Lee, P. L. Wolf, R. Escudero, R. Deutsch, S. W. Jamieson, and P. A. Thistlethwaite, “Early expression of angiogenesis factors in acute myocardial ischemia and infarction,” The New England Journal of Medicine, vol. 342, no. 9, pp. 626–633, 2000. View at Google Scholar
  6. D. Orlic, J. Kajstura, S. Chimenti et al., “Bone marrow cells regenerate infarcted myocardium,” Nature, vol. 410, no. 6829, pp. 701–705, 2001. View at Publisher · View at Google Scholar
  7. H. Takano, M. Ohtsuka, H. Akazawa et al., “Pleiotropic effects of cytokines on acute myocardial infarction: G-CSF as a novel therapy for acute myocardial infarction,” Current Pharmaceutical Design, vol. 9, no. 14, pp. 1121–1127, 2003. View at Google Scholar
  8. D. Orlic, J. Kajstura, S. Chimenti et al., “Mobilized bone marrow cells repair the infarcted heart, improving function and survival,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10344–10349, 2001. View at Publisher · View at Google Scholar
  9. J. M. Arbeit, “Quiescent hypervascularity mediated by gain of HIF-1α function,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 67, pp. 133–142, 2002. View at Google Scholar
  10. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, NY, USA, 1989.
  11. Z. Wen-Wu, H. Jian-Guo, M. Yan-Ling et al., “Experimental study of the transfection of human VEGF165 gene into rat bone mes enchymal stem cells in vitro,” Life Science Research, vol. 9, no. 4, pp. 301–307, 2005. View at Google Scholar
  12. S. Lehrman, “Virus treatment questioned after gene therapy death,” Nature, vol. 401, no. 6753, pp. 517–518, 1999. View at Publisher · View at Google Scholar
  13. E. Marshall, “Clinical research: gene therapy a suspect in leukemia-like disease,” Science, vol. 298, no. 5591, pp. 34–35, 2002. View at Publisher · View at Google Scholar
  14. S. J. Eastman, J. D. Tousignant, M. J. Lukason et al., “Optimization of formulations and conditions for the aerosol delivery of functional cationic lipid: DNA complexes,” Human Gene Therapy, vol. 8, no. 3, pp. 313–322, 1997. View at Publisher · View at Google Scholar
  15. P. L. Felgner, “Improvements in cationic liposomes for in vivo gene transfer,” Human Gene Therapy, vol. 7, no. 15, pp. 1791–1793, 1996. View at Publisher · View at Google Scholar
  16. M. A. Zanta, P. Belguise-Valladier, and J.-P. Behr, “Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 1, pp. 91–96, 1999. View at Publisher · View at Google Scholar
  17. P. Zhang, H. Zhang, S. S. Hu, L. G. Chen, and Y. J. Wei, “Plasmid transfection of rat bone marrow mesenchymal stem cells by cationic lipid for gene-modified cell transplantation therapy,” Acta Academiae Medicinae Sinicae, vol. 27, no. 4, pp. 504–508, 2005. View at Google Scholar
  18. J. A. Forsythe, B. H. Jiang, N. V. Iyer et al., “Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1,” Molecular and Cellular Biology, vol. 16, no. 9, pp. 4606–4613, 1996. View at Google Scholar
  19. J. Waltenberger, U. Mayr, S. Pentz, and V. Hombach, “Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia,” Circulation, vol. 94, no. 7, pp. 1647–1654, 1996. View at Google Scholar
  20. J. Müller-Ehmsen, P. Whittaker, R. A. Kloner et al., “Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium,” Journal of Molecular and Cellular Cardiology, vol. 34, no. 2, pp. 107–116, 2002. View at Publisher · View at Google Scholar
  21. Y. L. Tang, Y. Tang, Y. C. Zhang, K. Qian, L. Shen, and M. I. Phillips, “Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector,” Journal of the American College of Cardiology, vol. 46, no. 7, pp. 1339–1350, 2005. View at Publisher · View at Google Scholar
  22. V. A. S. Carmo, M. C. De Oliveira, E. C. O. Reis et al., “Physicochemical characterization and study of in vitro interactions of pH-sensitive liposomes with the complement system,” Journal of Liposome Research, vol. 18, no. 1, pp. 59–70, 2008. View at Publisher · View at Google Scholar