Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2009, Article ID 612805, 6 pages
http://dx.doi.org/10.1155/2009/612805
Research Article

Antioxidant and Anticancer Activities of Wampee (Clausena lansium (Lour.) Skeels) Peel

1Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
2Biotechnological Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
3Department of Food Science & Human Nutrition, Clemson University, Clemson, SC 29634, USA

Received 5 March 2009; Revised 17 May 2009; Accepted 8 June 2009

Academic Editor: Vickram Ramkumar

Copyright © 2009 K. Nagendra Prasad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Namiki, “Antioxidants/antimutagens in food,” Critical Reviews in Food Science and Nutrition, vol. 29, no. 4, pp. 273–300, 1990. View at Google Scholar
  2. B. Halliwell, “Dietary polyphenols: good, bad, or indifferent for your health?” Cardiovascular Research, vol. 73, no. 2, pp. 341–347, 2007. View at Publisher · View at Google Scholar
  3. A. D. O. Rios, L. M. G. Antunes, and M. D. L. P. Bianchi, “Bixin and lycopene modulation of free radical generation induced by cisplatin-DNA interaction,” Food Chemistry, vol. 113, no. 4, pp. 1113–1118, 2009. View at Publisher · View at Google Scholar
  4. G.-J. Fan, B. H. Han, Y.-H. Kang, and M. K. Park, “Evaluation of inhibitory potentials of chinese medicinal plants on platelet-activating factor (PAF) receptor binding,” Natural Product Sciences, vol. 7, no. 2, pp. 33–37, 2001. View at Google Scholar
  5. P. D. S. Spada, G. G. N. de Souza, G. V. Bortolini, J. A. P. Henriques, and M. Salvador, “Antioxidant, mutagenic, and antimutagenic activity of frozen fruits,” Journal of Medicinal Food, vol. 11, no. 1, pp. 144–151, 2008. View at Publisher · View at Google Scholar
  6. S. M. Mohsen and A. S. M. Ammar, “Total phenolic contents and antioxidant activity of corn tassel extracts,” Food Chemistry, vol. 112, no. 3, pp. 595–598, 2009. View at Publisher · View at Google Scholar
  7. J. Morton, “Fruits of warm climates,” Miami, Fla, USA, pp. 197-198, 1987.
  8. G. T. Liu, W.-X. Li, Y.-Y. Chen, and H.-L. Wei, “Hepatoprotective action of nine constituents isolated from the leaves of Clausena lansium in mice,” Drug Development Research, vol. 39, no. 2, pp. 174–178, 1996. View at Publisher · View at Google Scholar
  9. Z. F. Shen, Q. M. Chen, H. F. Liu, and M. Z. Xie, “The hypoglycemic effect of clausenacoumarine,” Acta Pharmaceutica Sinica, vol. 24, no. 5, pp. 391–392, 1989. View at Google Scholar
  10. T. B. Ng, S. K. Lam, and W. P. Fong, “A homodimeric sporamin-type trypsin inhibitor with antiproliferative, HIV reverse transcriptase-inhibitory and antifungal activities from wampee (Clausena lansium) seeds,” Biological Chemistry, vol. 384, no. 2, pp. 289–293, 2003. View at Publisher · View at Google Scholar
  11. M. Zhao, B. Yang, J. Wang, B. Li, and Y. Jiang, “Identification of the major flavonoids from pericarp tissues of lychee fruit in relation to their antioxidant activities,” Food Chemistry, vol. 98, no. 3, pp. 539–544, 2006. View at Publisher · View at Google Scholar
  12. V. L. Singleton and J. A. Rossi, “Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents,” American Journal of Enology and Vitriculture, vol. 16, pp. 144–158, 1965. View at Google Scholar
  13. X. Duan, G. Wu, and Y. Jiang, “Evaluation of the antioxidant properties of litchi fruit phenolics in relation to pericarp browning prevention,” Molecules, vol. 12, no. 4, pp. 759–771, 2007. View at Publisher · View at Google Scholar
  14. M. S. Blois, “Antioxidant determinations by the use of a stable free radical,” Nature, vol. 181, no. 4617, pp. 1199–1200, 1958. View at Publisher · View at Google Scholar
  15. Y. Pan, K. Wang, S. Huang et al., “Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel,” Food Chemistry, vol. 106, no. 3, pp. 1264–1270, 2008. View at Publisher · View at Google Scholar
  16. M. Zhao, B. Yang, J. Wang, Y. Liu, L. Yu, and Y. Jiang, “Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn.) pericarp,” International Immunopharmacology, vol. 7, no. 2, pp. 162–166, 2007. View at Publisher · View at Google Scholar
  17. G. K. Jayaprakasha, B. Girennavar, and B. S. Patil, “Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems,” Bioresource Technology, vol. 99, no. 10, pp. 4484–4494, 2008. View at Publisher · View at Google Scholar
  18. K. R. Markham, Techniques of Flavonoid Identification, Academic Press, London, UK, 1982.
  19. N. K. Prasad, B. Yang, N. Ruenroengklin, M. Zhao, and Y. Jiang, “Application of ultrasonication or high pressure to assist extraction of flavonoids from litchi fruit pericarp,” Journal of Food Process Engineering. In press. View at Publisher · View at Google Scholar
  20. A. Ardestani and R. Yazdanparast, “Antioxidant and free radical scavenging potential of Achillea santolina extracts,” Food Chemistry, vol. 104, no. 1, pp. 21–29, 2007. View at Publisher · View at Google Scholar
  21. H. Li, X. Wang, Y. Li, P. Li, and H. Wang, “Polyphenolic compounds and antioxidant properties of selected China wines,” Food Chemistry, vol. 112, no. 2, pp. 454–460, 2009. View at Publisher · View at Google Scholar
  22. M. H. Abdille, R. P. Singh, G. K. Jayaprakasha, and B. S. Jena, “Antioxidant activity of the extracts from Dillenia indica fruits,” Food Chemistry, vol. 90, no. 4, pp. 891–896, 2005. View at Publisher · View at Google Scholar
  23. P. Siddhuraju, P. S. Mohan, and K. Becker, “Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp,” Food Chemistry, vol. 79, no. 1, pp. 61–67, 2002. View at Publisher · View at Google Scholar
  24. N. Singh and P. S. Rajini, “Free radical scavenging activity of an aqueous extract of potato peel,” Food Chemistry, vol. 85, no. 4, pp. 611–616, 2004. View at Publisher · View at Google Scholar
  25. J.-Y. Lee, W.-I. Hwang, and S.-T. Lim, “Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. de Candolle roots,” Journal of Ethnopharmacology, vol. 93, no. 2-3, pp. 409–415, 2004. View at Publisher · View at Google Scholar
  26. A. Gawron and G. Kruk, “Cytotoxic effect of xanthotoxol (8-hydroxypsoralen) on TCTC cells in vitro,” Polish Journal of Pharmacology and Pharmacy, vol. 44, no. 1, pp. 51–57, 1992. View at Google Scholar
  27. K. N. Prasad, S. Divakar, G. R. Shivamurthy, and S. M. Aradhya, “Isolation of a free radical-scavenging antioxidant from water spinach (Ipomoea aquatica Forsk),” Journal of the Science of Food and Agriculture, vol. 85, no. 9, pp. 1461–1468, 2005. View at Publisher · View at Google Scholar
  28. N. Rangkadilok, S. Sitthimonchai, L. Worasuttayangkurn, C. Mahidol, M. Ruchirawat, and J. Satayavivad, “Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract,” Food and Chemical Toxicology, vol. 45, no. 2, pp. 328–336, 2007. View at Publisher · View at Google Scholar
  29. K. Plochmann, G. Korte, E. Koutsilieri et al., “Structure-activity relationships of flavonoid-induced cytotoxicity on human leukemia cells,” Archives of Biochemistry and Biophysics, vol. 460, no. 1, pp. 1–9, 2007. View at Publisher · View at Google Scholar
  30. L. Bravo, “Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance,” Nutrition Reviews, vol. 56, no. 11, pp. 317–333, 1998. View at Google Scholar