Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2009 (2009), Article ID 803069, 9 pages
http://dx.doi.org/10.1155/2009/803069
Review Article

Computational Challenges in miRNA Target Predictions: To Be or Not to Be a True Target?

1European Brain Research Institute-Fondazione EBRI-Rita Levi-Montalcini, Via del Fosso di Fiorano, 64/65, 00143 Roma, Italy
2Neurogenomics Facility, European Brain Research Institute-Fondazione EBRI-Rita Levi-Montalcini, Via del Fosso di Fiorano, 64/65, 00143 Roma, Italy
3Departamento de Ciências Morfológicas, ICBS, UFRGS, Rua Sarmento Leite 500, Porto Alegre, RS, CEP 90050-170, Brazil
4Gene Expression - Microarrays Laboratory, Bambino Gesù Children's Hospital, P.za S.Onofrio 4, 00165 Roma, Italy

Received 2 January 2009; Accepted 20 March 2009

Academic Editor: Zhumur Ghosh

Copyright © 2009 Christian Barbato et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J.-J. Song, S. K. Smith, G. J. Hannon, and L. Joshua-Tor, “Crystal structure of argonaute and its implications for RISC slicer activity,” Science, vol. 305, no. 5689, pp. 1434–1437, 2004. View at Publisher · View at Google Scholar
  2. V. N. Kim, J. Han, and M. C. Siomi, “Biogenesis of small RNAs in animals,” Nature Reviews Molecular Cell Biology, vol. 10, no. 2, pp. 126–139, 2009. View at Publisher · View at Google Scholar
  3. Z. Ghosh, B. Mallick, and J. Chakrabarti, “Cellular versus viral microRNAs in host-virus interaction,” Nucleic Acids Research, vol. 37, no. 4, pp. 1035–1048, 2009. View at Google Scholar
  4. M. Lindow and J. Gorodkin, “Principles and limitations of computational microRNA gene and target finding,” DNA and Cell Biology, vol. 26, no. 5, pp. 339–351, 2007. View at Publisher · View at Google Scholar
  5. D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at Publisher · View at Google Scholar
  6. R. S. Pillai, C. G. Artus, and W. Filipowicz, “Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis,” RNA, vol. 10, no. 10, pp. 1518–1525, 2004. View at Publisher · View at Google Scholar
  7. N. Rajewsky, “microRNA target predictions in animals,” Nature Genetics, vol. 38, supplement 1, pp. S8–S13, 2006. View at Publisher · View at Google Scholar
  8. P. Sethupathy, M. Megraw, and A. G. Hatzigeorgiou, “A guide through present computational approaches for the identification of mammalian microRNA targets,” Nature Methods, vol. 3, no. 11, pp. 881–886, 2006. View at Publisher · View at Google Scholar
  9. A. Krek, D. Grün, M. N. Poy et al., “Combinatorial microRNA target predictions,” Nature Genetics, vol. 37, no. 5, pp. 495–500, 2005. View at Publisher · View at Google Scholar
  10. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar
  11. B. John, A. J. Enright, A. Aravin, T. Tuschl, C. Sander, and D. S. Marks, “Human microRNA targets,” PLoS Biology, vol. 2, no. 11, article e363, pp. 1–18, 2004. View at Publisher · View at Google Scholar
  12. B. P. Lewis, I.-H. Shih, M. W. Jones-Rhoades, D. P. Bartel, and C. B. Burge, “Prediction of mammalian microRNA targets,” Cell, vol. 115, no. 7, pp. 787–798, 2003. View at Publisher · View at Google Scholar
  13. X. Xie, J. Lu, E. J. Kulbokas et al., “Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals,” Nature, vol. 434, no. 7031, pp. 338–345, 2005. View at Publisher · View at Google Scholar
  14. J. Li, G. Musso, and Z. Zhang, “Preferential regulation of duplicated genes by microRNAs in mammals,” Genome Biology, vol. 9, no. 8, article R132, pp. 1–10, 2008. View at Publisher · View at Google Scholar
  15. F. E. Nicolas, H. Pais, F. Schwach et al., “Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140,” RNA, vol. 14, no. 12, pp. 2513–2520, 2008. View at Publisher · View at Google Scholar
  16. S. S. Li, S. L. Yu, L. P. Kao et al., “Target identification of microRNAs expressed highly in human embryonic stem cells,” Journal of Cellular Biochemistry, vol. 106, no. 6, pp. 1020–1030, 2009. View at Publisher · View at Google Scholar
  17. S. Nam, B. Kim, S. Shin, and S. Lee, “miRGator: an integrated system for functional annotation of microRNAs,” Nucleic Acids Research, vol. 36, database issue, pp. D159–D164, 2008. View at Publisher · View at Google Scholar
  18. C. J. Creighton, A. K. Nagaraja, S. M. Hanash, M. M. Matzuk, and P. H. Gunaratne, “A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions,” RNA, vol. 14, no. 11, pp. 2290–2296, 2008. View at Publisher · View at Google Scholar
  19. S. Lin and J. Ding, “Integration of ranked lists via cross entropy Monte Carlo with applications to mRNA and microRNA studies,” Biometrics, vol. 65, no. 1, pp. 9–18, 2009. View at Publisher · View at Google Scholar
  20. J. C. Huang, Q. D. Morris, and B. J. Frey, “Bayesian inference of microRNA targets from sequence and expression data,” Journal of Computational Biology, vol. 14, no. 5, pp. 550–563, 2007. View at Publisher · View at Google Scholar
  21. C. Cheng and L. M. Li, “Inferring microRNA activities by combining gene expression with microRNA target prediction,” PLoS ONE, vol. 3, no. 4, article e1989, pp. 1–9, 2008. View at Publisher · View at Google Scholar
  22. R. W. Georgantas III, R. Hildreth, S. Morisot et al., “CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 8, pp. 2750–2755, 2007. View at Publisher · View at Google Scholar
  23. A. Chen, M. Luo, G. Yuan et al., “Complementary analysis of microRNA and mRNA expression during phorbol 12-myristate 13-acetate (TPA)-induced differentiation of HL-60 cells,” Biotechnology Letters, vol. 30, no. 12, pp. 2045–2052, 2008. View at Publisher · View at Google Scholar
  24. T. W. Nilsen, “Mechanisms of microRNA-mediated gene regulation in animal cells,” Trends in Genetics, vol. 23, no. 5, pp. 243–249, 2007. View at Publisher · View at Google Scholar
  25. A. Rodriguez, E. Vigorito, S. Clare et al., “Requirement of bic/microRNA-155 for normal immune function,” Science, vol. 316, no. 5824, pp. 608–611, 2007. View at Publisher · View at Google Scholar
  26. Z. Ghosh, J. Chakrabarti, and B. Mallick, “miRNomics—the bioinformatics of microRNA genes,” Biochemical and Biophysical Research Communications, vol. 363, no. 1, pp. 6–11, 2007. View at Publisher · View at Google Scholar
  27. R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” SIAM Journal on Discrete Mathematics, vol. 17, no. 1, pp. 134–160, 2003. View at Publisher · View at Google Scholar
  28. A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 43, pp. 15545–15550, 2005. View at Publisher · View at Google Scholar
  29. P. Sood, A. Krek, M. Zavolan, G. Macino, and N. Rajewsky, “Cell-type-specific signatures of microRNAs on target mRNA expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 8, pp. 2746–2751, 2006. View at Publisher · View at Google Scholar
  30. H. J. Bussemaker, H. Li, and E. D. Siggia, “Regulatory element detection using correlation with expression,” Nature Genetics, vol. 27, no. 2, pp. 167–171, 2001. View at Publisher · View at Google Scholar
  31. A. Arora and D. A. C. Simpson, “Individual mRNA expression profiles reveal the effects of specific microRNAs,” Genome Biology, vol. 9, no. 5, article R82, pp. 1–16, 2008. View at Publisher · View at Google Scholar
  32. E. J. Kort, L. Farber, M. Tretiakova et al., “The E2F3-oncomir-1 axis is activated in Wilms' tumor,” Cancer Research, vol. 68, no. 11, pp. 4034–4038, 2008. View at Publisher · View at Google Scholar
  33. G. Lanza, M. Ferracin, R. Gafà et al., “mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer,” Molecular Cancer, vol. 6, article 54, pp. 1–11, 2007. View at Publisher · View at Google Scholar
  34. K. H. Salter, C. R. Acharya, K. S. Walters et al., “An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer,” PLoS ONE, vol. 3, no. 4, article e1908, pp. 1–8, 2008. View at Publisher · View at Google Scholar
  35. M. Hammell, D. Long, L. Zhang et al., “mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts,” Nature Methods, vol. 5, no. 9, pp. 813–819, 2008. View at Publisher · View at Google Scholar
  36. G. Easow, A. A. Teleman, and S. M. Cohen, “Isolation of microRNA targets by miRNP immunopurification,” RNA, vol. 13, no. 8, pp. 1198–1204, 2007. View at Publisher · View at Google Scholar
  37. M. Beitzinger, L. Peters, J. Y. Zhu, E. Kremmer, and G. Meister, “Identification of human microRNA targets from isolated argonaute protein complexes,” RNA Biology, vol. 4, no. 2, pp. 76–84, 2007. View at Google Scholar
  38. L. Zhang, L. Ding, T. H. Cheung et al., “Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2,” Molecular Cell, vol. 28, no. 4, pp. 598–613, 2007. View at Publisher · View at Google Scholar
  39. F. V. Karginov, C. Conaco, Z. Xuan et al., “A biochemical approach to identifying microRNA targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19291–19296, 2007. View at Publisher · View at Google Scholar
  40. M. A. German, M. Pillay, D.-H. Jeong et al., “Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends,” Nature Biotechnology, vol. 26, no. 8, pp. 941–946, 2008. View at Publisher · View at Google Scholar