Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2009 (2009), Article ID 837608, 9 pages
http://dx.doi.org/10.1155/2009/837608
Research Article

Functional Expression of a DNA-Topoisomerase IB from Cryptosporidium parvum

Departamento de Ciencias Biomédicas (INTOXCAL), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain

Received 20 February 2009; Revised 20 May 2009; Accepted 28 May 2009

Academic Editor: Ali Ouaissi

Copyright © 2009 César Ordóñez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Mosier and R. D. Oberst, “Cryptosporidiosis: a global challenge,” Annals of the New York Academy of Sciences, vol. 916, pp. 102–111, 2000. View at Google Scholar
  2. R. Fayer, “Cryptosporidium: a water-borne zoonotic parasite,” Veterinary Parasitology, vol. 126, no. 1-2, pp. 37–56, 2004. View at Publisher · View at Google Scholar
  3. C. L. Chappell and P. C. Okhuysen, “Cryptosporidiosis,” Current Opinion in Infectious Diseases, vol. 15, no. 5, pp. 523–527, 2002. View at Google Scholar
  4. M. E. Olson, R. M. O'Handley, B. J. Ralston, T. A. McAllister, and R. C. A. Thompson, “Update on Cryptosporidium and Giardia infections in cattle,” Trends in Parasitology, vol. 20, no. 4, pp. 185–191, 2004. View at Publisher · View at Google Scholar
  5. J. R. Mead, “Cryptosporidiosis and the challenges of chemotherapy,” Drug Resistance Updates, vol. 5, no. 1, pp. 47–57, 2002. View at Publisher · View at Google Scholar
  6. S. Tzipori and G. Widmer, “A hundred-year retrospective on cryptosporidiosis,” Trends in Parasitology, vol. 24, no. 4, pp. 184–189, 2008. View at Publisher · View at Google Scholar
  7. M. Kosek, C. Alcantara, A. A. Lima, and R. L. Guerrant, “Cryptosporidiosis: an update,” Lancet Infectious Diseases, vol. 1, no. 4, pp. 262–269, 2001. View at Publisher · View at Google Scholar
  8. S. Tzipori, J. Griffiths, and C. Theodos, “Paromomycin treatment against cryptosporidiosis in patients with AIDS,” Journal of Infectious Diseases, vol. 171, no. 4, pp. 1069–1070, 1995. View at Google Scholar
  9. S. Tzipori, “Cryptosporidiosis: laboratory investigations and chemotherapy,” Advances in Parasitology, vol. 40, pp. 187–221, 1998. View at Google Scholar
  10. C. M. Theodos, J. K. Griffiths, J. D'Onfro, A. Fairfield, and S. Tzipori, “Efficacy of nitazoxanide against Cryptosporidium parvum in cell culture and in animal models,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 8, pp. 1959–1965, 1998. View at Google Scholar
  11. E. M. Zardi, A. Picardi, and A. Afeltra, “Treatment of cryptosporidiosis in immunocompromised hosts: still an open question,” Chemotherapy, vol. 51, no. 4, pp. 193–196, 2005. View at Publisher · View at Google Scholar
  12. G. Gargala, “Drug treatment and novel drug target against Cryptosporidium,” Parasite, vol. 15, no. 3, pp. 275–281, 2008. View at Google Scholar
  13. J. C. Wang, “DNA topoisomerases,” Annual Review of Biochemistry, vol. 65, pp. 635–692, 1996. View at Google Scholar
  14. J. J. Champoux, “DNA topoisomerases: structure, function, and mechanism,” Annual Review of Biochemistry, vol. 70, pp. 369–413, 2001. View at Publisher · View at Google Scholar
  15. K. D. Corbett and J. M. Berger, “Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases,” Annual Review of Biophysics and Biomolecular Structure, vol. 33, pp. 95–118, 2004. View at Publisher · View at Google Scholar
  16. K. Mdluli and Z. Ma, “Mycobacterium tuberculosis DNA gyrase as a target for drug discovery,” Infectious Disorders: Drug Targets, vol. 7, no. 2, pp. 159–168, 2007. View at Publisher · View at Google Scholar
  17. S. J. Cheesman, “The topoisomerases of protozoan parasites,” Parasitology Today, vol. 16, no. 7, pp. 277–281, 2000. View at Publisher · View at Google Scholar
  18. R. P. Bakshi and T. A. Shapiro, “DNA topoisomerases as targets for antiprotozoal therapy,” Mini Reviews in Medicinal Chemistry, vol. 3, no. 6, pp. 597–608, 2003. View at Google Scholar
  19. R. Balaña-Fouce, C. M. Redondo, Y. Pérez-Pertejo, R. Díaz-González, and R. M. Reguera, “Targeting atypical trypanosomatid DNA topoisomerase I,” Drug Discovery Today, vol. 11, no. 15-16, pp. 733–740, 2006. View at Publisher · View at Google Scholar
  20. K. Tosh and B. Kilbey, “The gene encoding topoisomerase I from the human malaria parasite Plasmodium falciparum,” Gene, vol. 163, no. 1, pp. 151–154, 1995. View at Publisher · View at Google Scholar
  21. K. Tosh, S. Cheesman, P. Horrocks, and B. Kilbey, “Plasmodium falciparum: stage-related expression of topoisomerase I,” Experimental Parasitology, vol. 91, no. 2, pp. 126–132, 1999. View at Publisher · View at Google Scholar
  22. L. J. Christopher and C. C. Dykstra, “Identification of a type II topoisomerase gene from Cryptosporidium parvum,” The Journal of Eukaryotic Microbiology, vol. 41, no. 5, p. 28S, 1994. View at Google Scholar
  23. C. L. Hann, A. L. Carlberg, and M.-A. Bjornsti, “Intragenic suppressors of mutant DNA topoisomerase I-induced lethality diminish enzyme binding of DNA,” Journal of Biological Chemistry, vol. 273, no. 47, pp. 31519–31527, 1998. View at Publisher · View at Google Scholar
  24. M. S. Abrahamsen, T. J. Templeton, S. Enomoto et al., “Complete genome sequence of the apicomplexan, Cryptosporidium parvum,” Science, vol. 304, no. 5669, pp. 441–445, 2004. View at Publisher · View at Google Scholar
  25. R. D. Gietz and R. H. Schiestl, “Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier,” Yeast, vol. 7, no. 3, pp. 253–263, 1991. View at Google Scholar
  26. S. M. Jazwinski, “Preparation of extracts from yeast,” Methods in Enzymology, vol. 182, pp. 154–174, 1990. View at Publisher · View at Google Scholar
  27. A. M. Knab, J. Fertala, and M.-A. Bjornsti, “Mechanisms of camptothecin resistance in yeast DNA topoisomerase I mutants,” Journal of Biological Chemistry, vol. 268, no. 30, pp. 22322–22330, 1993. View at Google Scholar
  28. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar
  29. L. Stewart, G. C. Ireton, and J. J. Champoux, “The domain organization of human topoisomerase I,” Journal of Biological Chemistry, vol. 271, no. 13, pp. 7602–7608, 1996. View at Publisher · View at Google Scholar
  30. G. G. Chabot, “Clinical pharmacokinetics of irinotecan,” Clinical Pharmacokinetics, vol. 33, no. 4, pp. 245–259, 1997. View at Google Scholar
  31. P. A. Rochelle, S. J. Upton, B. A. Montelone, and K. Woods, “The response of Cryptosporidium parvum to UV light,” Trends in Parasitology, vol. 21, no. 2, pp. 81–87, 2005. View at Publisher · View at Google Scholar
  32. Y. Pommier, “Topoisomerase I inhibitors: camptothecins and beyond,” Nature Reviews Cancer, vol. 6, no. 10, pp. 789–802, 2006. View at Publisher · View at Google Scholar
  33. H. Villa, A. R. O. Marcos, R. M. Reguera et al., “A novel active DNA topoisomerase I in Leishmania donovani,” Journal of Biological Chemistry, vol. 278, no. 6, pp. 3521–3526, 2003. View at Publisher · View at Google Scholar
  34. A. D. Jensen and J. Q. Svejstrup, “Purification and characterization of human topoisomerase I mutants,” European Journal of Biochemistry, vol. 236, no. 2, pp. 389–394, 1996. View at Google Scholar
  35. J. F. Riou, M. Gabillot, M. Philippe, J. Schrevel, and G. Riou, “Purification and characterization of Plasmodium berghei DNA topoisomerases I and II: drug action, inhibition of decatenation and relaxation, and stimulation of DNA cleavage,” Biochemistry, vol. 25, no. 7, pp. 1471–1479, 1986. View at Publisher · View at Google Scholar