Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 101864, 10 pages
http://dx.doi.org/10.1155/2010/101864
Review Article

Optical Spectroscopy for Noninvasive Monitoring of Stem Cell Differentiation

School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, UK

Received 25 August 2009; Revised 13 October 2009; Accepted 11 November 2009

Academic Editor: Pierre Bagnaninchi

Copyright © 2010 Andrew Downes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. F. Segers and R. T. Lee, “Stem-cell therapy for cardiac disease,” Nature, vol. 451, no. 7181, pp. 937–942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Langer, “Tissue engineering: perspectives, challenges, and future directions,” Tissue Engineering, vol. 13, no. 1, pp. 1–2, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. L. M. Hoffman and M. K. Carpenter, “Characterization and culture of human embryonic stem cells,” Nature Biotechnology, vol. 23, no. 6, pp. 699–708, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Nagano, Y. Yoshida, and T. Isobe, “Cell surface biomarkers of embryonic stem cells,” Proteomics, vol. 8, no. 19, pp. 4025–4035, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Fukuda, J. Takahashi, K. Watanabe et al., “Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation,” Stem Cells, vol. 24, no. 3, pp. 763–771, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Pruszak, K.-C. Sonntag, M. H. Aung, R. Sanchez-Pernaute, and O. Isacson, “Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations,” Stem Cells, vol. 25, no. 9, pp. 2257–2268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Dousset, T. Tourdias, B. Brochet, C. Boiziau, and K. G. Petry, “How to trace stem cells for MRI evaluation?” Journal of the Neurological Sciences, vol. 265, no. 1-2, pp. 122–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. C. Addis, J. W. Bulte, and J. D. Gearhart, “Special cells, special considerations: the challenges of bringing embryonic stem cells from the laboratory to the clinic,” Clinical Pharmacology and Therapeutics, vol. 83, no. 3, pp. 386–389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. W. Chan, D. K. Lieu, T. Huser, and R. A. Li, “Label-free separation of human embryonic stem cells and their cardiac derivatives using Raman spectroscopy,” Analytical Chemistry, vol. 81, no. 4, pp. 1324–1331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. J. Walsh, A. Hammiche, T. G. Fellous et al., “Tracking the cell hierarchy in the human intestine using biochemical signatures derived by mid-infrared microspectroscopy,” Stem Cell Research, vol. 3, no. 1, pp. 15–27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. J. German, H. M. Pollock, B. Zhao et al., “Characterization of putative stem cell populations in the cornea using synchrotron infrared microspectroscopy,” Investigative Ophthalmology & Visual Science, vol. 47, no. 6, pp. 2417–2421, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. E. V. Loewenstein, “The history and current status of Fourier transform spectroscopy,” Applied Optics, vol. 5, no. 5, pp. 845–854, 1966. View at Publisher · View at Google Scholar
  13. W. Yang, X. Xiao, J. Tan, and Q. Cai, “In situ evaluation of breast cancer cell growth with 3D ATR-FTIR spectroscopy,” Vibrational Spectroscopy, vol. 49, no. 1, pp. 64–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Tobin, M. A. Chesters, J. M. Chalmers et al., “Infrared microscopy of epithelial cancer cells in whole tissues and in tissue culture, using synchrotron radiation,” Faraday Discussions, vol. 126, pp. 27–39, 2004. View at Google Scholar · View at Scopus
  15. C. Krafft, R. Salzer, S. Seitz, C. Ern, and M. Schieker, “Differentiation of individual human mesenchymal stem cells probed by FTIR microscopic imaging,” The Analyst, vol. 132, no. 7, pp. 647–653, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Hirschfeld, “Subsurface layer studies by attenuated total reflection Fourier transform spectroscopy,” Applied Spectroscopy, vol. 31, no. 4, pp. 289–292, 1977. View at Google Scholar · View at Scopus
  17. M. K. Kuimova, K. L. A. Chan, and S. G. Kazarian, “Chemical imaging of live cancer cells in the natural aqueous environment,” Applied Spectroscopy, vol. 63, no. 2, pp. 164–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. V. Raman and K. S. Krishnan, “The negative absorption of radiation,” Nature, vol. 122, no. 3062, pp. 12–13, 1928. View at Google Scholar · View at Scopus
  19. Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophysical Journal, vol. 71, no. 4, pp. 2158–2167, 1996. View at Google Scholar · View at Scopus
  20. K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” Journal of Biomedical Optics, vol. 13, no. 4, Article ID 044027, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Matthäus, T. Chernenko, A. Kale, V. Torchilin, and M. Diem, “New ways of imaging uptake and intracellular fate of liposomal drug carrier systems inside individual cells, based on Raman microscopy,” Molecular Pharmaceutics, vol. 5, no. 2, pp. 287–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Krafft, T. Knetschke, A. Siegner, R. H. W. Funk, and R. Salzer, “Mapping of single cells by near infrared Raman microspectroscopy,” Vibrational Spectroscopy, vol. 32, no. 1, pp. 75–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Pully, A. Lenferink, and C. Otto, “Hybrid Rayleigh, Raman and two-phot 6 on excited fluorescence spectral confocal microscopy of living cells,” to appear in Journal of Raman Spectroscopy. View at Publisher · View at Google Scholar
  24. F. L. Martin, M. J. German, E. Wit, T. Fearn, N. Ragavan, and H. M. Pollock, “Identifying variables responsible for clustering in discriminant analysis of data from infrared microspectroscopy of a biological sample,” Journal of Computational Biology, vol. 14, no. 9, pp. 1176–1184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Physical Review, vol. 137, no. 3, pp. A801–A818, 1965. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Physical Review Letters, vol. 82, no. 20, pp. 4142–4145, 1999. View at Google Scholar · View at Scopus
  27. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Strokes Raman scattering microscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 46, pp. 16807–16812, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Downes, R. Mouras, and A. Elfick, “A versatile CARS microscope for biological imaging,” Journal of Raman Spectroscopy, vol. 40, no. 7, pp. 757–762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. K. König, T. W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Optics Letters, vol. 24, no. 2, pp. 113–115, 1999. View at Google Scholar · View at Scopus
  30. H. Kano and H.-O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Optics Express, vol. 14, no. 7, pp. 2798–2804, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Kano and H.-O. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” Journal of Raman Spectroscopy, vol. 37, no. 1–3, pp. 411–415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. H. N. Paulsen, K. M. Hilligse, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Optics Letters, vol. 28, no. 13, pp. 1123–1125, 2003. View at Google Scholar · View at Scopus
  33. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Optics Letters, vol. 29, no. 23, pp. 2701–2703, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” Journal of Raman Spectroscopy, vol. 38, no. 7, pp. 916–926, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. W. Freudiger, W. Min, B. G. Saar et al., “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science, vol. 322, no. 5909, pp. 1857–1861, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Optics Letters, vol. 31, no. 2, pp. 241–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. D. L. Marks, J. B. Geddes III, and S. A. Boppart, “Molecular identification by generating coherence between molecular normal modes using stimulated Raman scattering,” Optics Letters, vol. 34, no. 12, pp. 1756–1758, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Ami, T. Neri, A. Natalello et al., “Embryonic stem cell differentiation studied by FT-IR spectroscopy,” Biochimica et Biophysica Acta, vol. 1783, no. 1, pp. 98–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. J. Walsh, T. G. Fellous, A. Hammiche et al., “Fourier transform infrared microspectroscopy identifies symmetric PO2 -modifications as a marker of the putative stem cell region of human intestinal crypts,” Stem Cells, vol. 26, no. 1, pp. 108–118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Notingher, I. Bisson, A. E. Bishop, W. L. Randle, J. M. P. Polak, and L. L. Hench, “In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro,” Analytical Chemistry, vol. 76, no. 11, pp. 3185–3193, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. R. M. Salasznyk, R. F. Klees, W. A. Williams, A. Boskey, and G. E. Plopper, “Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells,” Experimental Cell Research, vol. 313, no. 1, pp. 22–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. J. Bentley, T. Nakamura, A. Hammiche et al., “Characterization of human corneal stem cells by synchrotron infrared micro-spectroscopy,” Molecular Vision, vol. 13, pp. 237–242, 2007. View at Google Scholar · View at Scopus
  43. I. Notingher, I. Bisson, J. M. Polak, and L. L. Hench, “In situ spectroscopic study of nucleic acids in differentiating embryonic stem cells,” Vibrational Spectroscopy, vol. 35, no. 1-2, pp. 199–203, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. J. W. Chan, D. S. Taylor, and D. L. Thompson, “The effect of cell fixation on the discrimination of normal and leukemia cells with laser tweezers Raman spectroscopy,” Biopolymers, vol. 91, no. 2, pp. 132–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. N. J. Crane, “A nondestructive method for monitoring in vitro stem cell osteogenic differentiation with Raman spectroscopic mapping,” Spectroscopy, vol. 24, no. 3, p. 9, 2009. View at Google Scholar
  46. G. Pelled, K. Tai, D. Sheyn et al., “Structural and nanoindentation studies of stem cell-based tissue-engineered bone,” Journal of Biomechanics, vol. 40, no. 2, pp. 399–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Liu, W. Li, S. Shi, S. Habelitz, C. Gao, and P. DenBesten, “MEPE is downregulated as dental pulp stem cells differentiate,” Archives of Oral Biology, vol. 50, no. 11, pp. 923–928, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Azrad, D. Zahor, R. Vago et al., “Probing the effect of an extract of elk velvet antler powder on mesenchymal stem cells using Raman microspectroscopy: enhanced differentiation toward osteogenic fate,” Journal of Raman Spectroscopy, vol. 37, no. 4, pp. 480–486, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Gentleman, R. J. Swain, N. D. Evans et al., “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nature Materials, vol. 8, no. 9, pp. 763–770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. S. O. Konorov, C. H. Glover, J. M. Piret et al., “In situ analysis of living embryonic stem cells by coherent anti-Stokes Raman microscopy,” Analytical Chemistry, vol. 79, no. 18, pp. 7221–7225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro et al., “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, no. 5391, pp. 1145–1147, 1998. View at Google Scholar · View at Scopus
  52. S. K. Oh, S. H. Kim, H. J. Ahn et al., “Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3,” Stem Cells, vol. 23, no. 2, pp. 211–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. I. Faro-Trindade and P. R. Cook, “A conserved organization of transcription during embryonic stem cell differentiation and in cells with high C value,” Molecular Biology of the Cell, vol. 17, no. 7, pp. 2910–2920, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Prowse, E. Wolvetang, and P. Gray, “A rapid, cost-effective method for counting human embryonic stem cell numbers as clumps,” BioTechniques, vol. 47, no. 1, pp. 599–606, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. M. N. Slipchenko, T. T. Le, H. Chen, and J.-X. Cheng, “High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy,” Journal of Physical Chemistry B, vol. 113, no. 21, pp. 7681–7686, 2009. View at Publisher · View at Google Scholar · View at Scopus