Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 103976, 11 pages
http://dx.doi.org/10.1155/2010/103976
Research Article

Impact of Lentiviral Vector-Mediated Transduction on the Tightness of a Polarized Model of Airway Epithelium and Effect of Cationic Polymer Polyethylenimine

Department of Biomedical Sciences, University of Foggia, 71122 Foggia, Italy

Received 24 December 2009; Revised 31 March 2010; Accepted 9 May 2010

Academic Editor: Karl Chai

Copyright © 2010 Stefano Castellani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Copreni, M. Penzo, S. Carrabino, and M. Conese, “Lentivirus-mediated gene transfer to the respiratory epithelium: a promising approach to gene therapy of cystic fibrosis,” Gene Therapy, vol. 11, no. 1, pp. S67–S75, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Conese, E. Copreni, D. Piro, and J. Rejman, “Gene and cell therapy for the treatment of cystic fibrosis,” Advances in Gene, Molecular and Cell Therapy, vol. 1, pp. 99–119, 2007. View at Google Scholar
  3. P. L. Sinn, E. R. Burnight, M. A. Hickey, G. W. Blissard, and P. B. McCray Jr., “Persistent gene expression in mouse nasal epithelia following feline immunodeficiency virus-based vector gene transfer,” Journal of Virology, vol. 79, no. 20, pp. 12818–12827, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Wang, V. Slepushkin, J. Zabner et al., “Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect,” Journal of Clinical Investigation, vol. 104, no. 11, pp. R55–R62, 1999. View at Google Scholar · View at Scopus
  5. M. Limberis, D. S. Anson, M. Fuller, and D. W. Parsons, “Recovery of airway cystic fibrosis transmembrane conductance regulator function in mice with cystic fibrosis after single-dose lentivirus-mediated gene transfer,” Human Gene Therapy, vol. 13, no. 16, pp. 1961–1970, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. K. L. Kremer, K. R. Dunning, D. W. Parsons, and D. S. Anson, “Gene delivery to airway epithelial cells in vivo: a direct comparison of apical and basolateral transduction strategies using pseudotyped lentivirus vectors,” Journal of Gene Medicine, vol. 9, no. 5, pp. 362–368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. F.-Y. Lim, G. P. Kobinger, D. J. Weiner, A. Radu, J. M. Wilson, and T. M. Crombleholme, “Human fetal trachea-scid mouse xenografts: efficacy of vesicular stomatitis virus-G pseudotyped lentiviral-mediated gene transfer,” Journal of Pediatric Surgery, vol. 38, no. 6, pp. 834–839, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. P. L. Sinn, A. C. Arias, K. A. Brogden, and P. B. McCray Jr., “Lentivirus vector can be readministered to nasal epithelia without blocking immune responses,” Journal of Virology, vol. 82, no. 21, pp. 10684–10692, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Copreni, E. Nicolis, A. Tamanini et al., “Late generation lentiviral vectors: evaluation of inflammatory potential in human airway epithelial cells,” Virus Research, vol. 144, no. 1-2, pp. 8–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. G. P. Kobinger, D. J. Weiner, Q.-C. Yu, and J. M. Wilson, “Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo,” Nature Biotechnology, vol. 19, no. 3, pp. 225–230, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. R. J. Pickles, D. McCarty, H. Matsui, P. J. Hart, S. H. Randell, and R. C. Boucher, “Limited entry of adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene transfer,” Journal of Virology, vol. 72, no. 7, pp. 6014–6023, 1998. View at Google Scholar · View at Scopus
  12. R. W. Walters, T. Grunst, J. M. Bergelson, R. W. Finberg, M. J. Welsh, and J. Zabner, “Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia,” The Journal of Biological Chemistry, vol. 274, no. 15, pp. 10219–10226, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Zabner, P. Freimuth, A. Puga, A. Fabrega, and M. J. Welsh, “Lack of high affinity fiber receptor activity explains the resistance of ciliated airway epithelia to adenovirus infection,” Journal of Clinical Investigation, vol. 100, no. 5, pp. 1144–1149, 1997. View at Google Scholar · View at Scopus
  14. C. Summerford, J. S. Bartlett, and R. J. Samulski, “αVβ5 integrin: a co-receptor for adeno-associated virus type 2 infection,” Nature Medicine, vol. 5, no. 1, pp. 78–82, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Summerford and R. J. Samulski, “Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions,” Journal of Virology, vol. 72, no. 2, pp. 1438–1445, 1998. View at Google Scholar · View at Scopus
  16. M. P. Boyle, R. A. Enke, J. B. Reynolds, P. J. Mogayzel Jr., W. B. Guggino, and P. L. Zeitlin, “Membrane-associated heparan sulfate is not required for rAAV-2 infection of human respiratory epithelia,” Virology Journal, vol. 3, p. 29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Duan, Y. Yue, Z. Yan, P. B. Mccray Jr., and J. F. Engelhardt, “Polarity influences the efficiency of recombinant adenoassociated virus infection in differentiated airway epithelia,” Human Gene Therapy, vol. 9, no. 18, pp. 2761–2776, 1998. View at Google Scholar · View at Scopus
  18. G. Wang, B. L. Davidson, P. Melchert et al., “Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia,” Journal of Virology, vol. 72, no. 12, pp. 9818–9826, 1998. View at Google Scholar · View at Scopus
  19. L. G. Johnson, J. C. Olsen, L. Naldini, and R. C. Boucher, “Pseudotyped human lentiviral vector-mediated gene transfer to airway epithelia in vivo,” Gene Therapy, vol. 7, no. 7, pp. 568–574, 2000. View at Google Scholar · View at Scopus
  20. G. H. Guibinga, A. Miyanohara, J. D. Esko, and T. Friedmann, “Cell surface heparan sulfate is a receptor for attachment of envelope protein-free retrovirus-like particles and VSV-G pseudotyped MLV-derived retrovirus vectors to target cells,” Molecular Therapy, vol. 5, no. 5, pp. 538–546, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Copreni, S. Castellani, L. Palmieri, M. Penzo, and M. Conese, “Involvement of glycosaminoglycans in vesicular stomatitis virus G glycoprotein pseudotyped lentiviral vector-mediated gene transfer into airway epithelial cells,” Journal of Gene Medicine, vol. 10, no. 12, pp. 1294–1302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Follenzi, L. E. Ailles, S. Bakovic, M. Geuna, and L. Naldini, “Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences,” Nature Genetics, vol. 25, no. 2, pp. 217–222, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. King, “Detection of dead cells and measurement of cell killing by flow cytometry,” Journal of Immunological Methods, vol. 243, no. 1-2, pp. 155–166, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. J. A. Steinkamp, B. E. Lehnert, and N. M. Lehnert, “Discrimination of damaged/dead cells by propidium iodide uptake in immunofluorescently labeled populations analyzed by phase-sensitive flow cytometry,” Journal of Immunological Methods, vol. 226, no. 1-2, pp. 59–70, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Conese, P. Montemurro, R. Fumarulo, D. Giordano, S. Riccardi, and M. N. Colucci Semeraro, “Inhibitory effect of retinoids on the generation of procoagulant activity by blood mononuclear phagocytes,” Thrombosis and Haemostasis, vol. 66, no. 6, pp. 662–665, 1991. View at Google Scholar · View at Scopus
  26. J. Rejman, S. Di Gioia, A. Bragonzi, and M. Conese, “Pseudomonas aeruginosa infection destroys the barrier function of lung epithelium and enhances polyplex-mediated transfection,” Human Gene Therapy, vol. 18, no. 7, pp. 642–652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. L. González-Mariscal, A. Betanzos, P. Nava, and B. E. Jaramillo, “Tight junction proteins,” Progress in Biophysics and Molecular Biology, vol. 81, no. 1, pp. 1–44, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. E. E. Schneeberger and R. D. Lynch, “The tight junction: a multifunctional complex,” American Journal of Physiology, vol. 286, no. 6, pp. C1213–C1228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. B. Coyne, L. Shen, J. R. Turner, and J. M. Bergelson, “Coxsackievirus entry across epithelial tight junctions requires occludin and the small GTPases Rab34 and Rab5,” Cell Host and Microbe, vol. 2, no. 3, pp. 181–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Benedicto, F. Molina-Jiménez, O. Barreiro et al., “Hepatitis C virus envelope components alter localization of hepatocyte tight junction-associated proteins and promote occludin retention in the endoplasmic reticulum,” Hepatology, vol. 48, no. 4, pp. 1044–1053, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. S. Alexander, T. Dayton, C. Davis et al., “Activated T-lymphocytes express occludin, a component of tight junctions,” Inflammation, vol. 22, no. 6, pp. 573–582, 1998. View at Google Scholar · View at Scopus
  32. M. S. Smith, G. L. Bentz, J. S. Alexander, and A. D. Yurochko, “Human cytomegalovirus induces monocyte differentiation and migration as a strategy for dissemination and persistence,” Journal of Virology, vol. 78, no. 9, pp. 4444–4453, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. C. P. Hodgson and F. Solaiman, “Virosomes: cationic liposomes enhance retroviral transduction,” Nature Biotechnology, vol. 14, no. 3, pp. 339–342, 1996. View at Google Scholar · View at Scopus
  34. W. P. Swaney, F. L. Sorgi, A. B. Bahnson, and J. A. Barranger, “The effect of cationic liposome pretreatment and cenfrifugation on retrovirus-mediated gene transfer,” Gene Therapy, vol. 4, no. 12, pp. 1379–1386, 1997. View at Google Scholar · View at Scopus
  35. C. D. Porter, K. V. Lukacs, G. Box, Y. Takeuchi, and M. K. L. Collins, “Cationic liposomes enhance the rate of transduction by a recombinant retroviral vector in vitro and in vivo,” Journal of Virology, vol. 72, no. 6, pp. 4832–4840, 1998. View at Google Scholar · View at Scopus
  36. M. Themis, S. J. Forbes, L. Chan et al., “Enhanced in vitro and in vivo gene delivery using cationic agent complexed retrovirus vectors,” Gene Therapy, vol. 5, no. 9, pp. 1180–1186, 1998. View at Google Scholar · View at Scopus
  37. I. S. Blagbrough, A. J. Geall, and A. P. Neal, “Polyamines and novel polyamine conjugates interact with DNA in ways that can be exploited in non-viral gene therapy,” Biochemical Society Transactions, vol. 31, no. 2, pp. 397–406, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Fischer, T. Bieber, Y. Li, H.-P. Elsässer, and T. Kissel, “A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity,” Pharmaceutical Research, vol. 16, no. 8, pp. 1273–1279, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. K. S. Rostand and J. D. Esko, “Microbial adherence to and invasion through proteoglycans,” Infection and Immunity, vol. 65, no. 1, pp. 1–8, 1997. View at Google Scholar · View at Scopus
  40. Z. Borok, J. E. Harboe-Schmidt, S. L. Brody et al., “Vesicular stomatitis virus G-pseudotyped lentivirus vectors mediate efficient apical transduction of polarized quiescent primary alveolar epithelial cells,” Journal of Virology, vol. 75, no. 23, pp. 11747–11754, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. A. L. Cozens, M. J. Yezzi, K. Kunzelmann et al., “CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 10, no. 1, pp. 38–47, 1994. View at Google Scholar · View at Scopus
  42. P. J. Mohler, S. M. Kreda, R. C. Boucher, M. Sudol, M. J. Stutts, and S. L. Milgram, “Yes-associated protein 65 localizes p62(c-Yes) to the apical compartment of airway epithelia by association with EBP50,” Journal of Cell Biology, vol. 147, no. 4, pp. 879–890, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Guerra, T. Fanelli, M. Favia et al., “Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o- cells and rescues ΔF508 CFTR functional expression in cystic fibrosis cells,” The Journal of Biological Chemistry, vol. 280, no. 49, pp. 40925–40933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. C. J. Cohen, J. T. C. Shieh, R. J. Pickles, T. Okegawa, J.-T. Hsieh, and J. M. Bergelson, “The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 26, pp. 15191–15196, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. C. B. Coyne and J. M. Bergelson, “Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions,” Cell, vol. 124, no. 1, pp. 119–131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. I. Benedicto, F. Molina-Jiménez, B. Bartosch et al., “The tight junction-associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection,” Journal of Virology, vol. 83, no. 16, pp. 8012–8020, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Dodds, T. A. Piper, S. J. Murphy, and G. Dickson, “Cationic lipids and polymers are able to enhance adenoviral infection of cultured mouse myotubes,” Journal of Neurochemistry, vol. 72, no. 5, pp. 2105–2112, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. S. M. Arcasoy, J. D. Latoche, M. Gondor, B. R. Pitt, and J. M. Pilewski, “Polycations increase the efficiency of adenovirus-mediated gene transfer to epithelial and endothelial cells in vitro,” Gene Therapy, vol. 4, no. 1, pp. 32–38, 1997. View at Google Scholar · View at Scopus
  49. A. Fasbender, J. Zabner, M. Chillón et al., “Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo,” The Journal of Biological Chemistry, vol. 272, no. 10, pp. 6479–6489, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Chillón, J. H. Lee, A. Fasbender, and M. J. Welsh, “Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro,” Gene Therapy, vol. 5, no. 7, pp. 995–1002, 1998. View at Google Scholar · View at Scopus
  51. J. M. Kaplan, S. E. Pennington, J. A. St. George et al., “Potentiation of gene transfer to the mouse lung by complexes of adenovirus vector and polycations improves therapeutic potential,” Human Gene Therapy, vol. 9, no. 10, pp. 1469–1479, 1998. View at Google Scholar · View at Scopus
  52. C. Qiu, M. B. De Young, A. Finn, and D. A. Dichek, “Cationic liposomes enhance adenovirus entry via a pathway independent of the fiber receptor and α(v)-integrins,” Human Gene Therapy, vol. 9, no. 4, pp. 507–520, 1998. View at Google Scholar · View at Scopus
  53. D. Finsinger, J.-S. Remy, P. Erbacher, C. Koch, and C. Plank, “Protective copolymers for nonviral gene vectors: synthesis, vector characterization and application in gene delivery,” Gene Therapy, vol. 7, no. 14, pp. 1183–1192, 2000. View at Google Scholar · View at Scopus
  54. S. Hong, P. R. Leroueil, E. K. Janus et al., “Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability,” Bioconjugate Chemistry, vol. 17, no. 3, pp. 728–734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Di Gioia and M. Conese, “Polyethylenimine-mediated gene delivery to the lung and therapeutic applications,” Journal of Drug Design, Development and Therapy, vol. 2, pp. 163–188, 2008. View at Google Scholar