Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 104296, 9 pages
http://dx.doi.org/10.1155/2010/104296
Research Article

Efficient Isolation of Cardiac Stem Cells from Brown Adipose

Department of Tissue Engineering, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China

Received 30 October 2009; Revised 5 February 2010; Accepted 10 February 2010

Academic Editor: Aikaterini Kontrogianni-Konstantopoulos

Copyright © 2010 Zhiqiang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Planat-Bénard, C. Menard, M. André et al., “Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells,” Circulation Research, vol. 94, no. 2, pp. 223–229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. W. H. Zimmermann, I. Melnychenko, G. Wasmeier et al., “Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts,” Nature Medicine, vol. 12, no. 4, pp. 452–458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. P. Beltrami, L. Barlucchi, D. Torella et al., “Adult cardiac stem cells are multipotent and support myocardial regeneration,” Cell, vol. 114, no. 6, pp. 763–776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Kofidis, D. R. Lebl, E. C. Martinez, G. Hoyt, M. Tanaka, and R. C. Robbins, “Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury,” Circulation, vol. 112, no. 9, supplement, pp. I.173–I.177, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. K. L. Christman, A. J. Vardanian, Q. Fang, R. E. Sievers, H. H. Fok, and R. J. Lee, “Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium,” Journal of the American College of Cardiology, vol. 44, no. 3, pp. 654–660, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. A. Mangi, N. Noiseux, D. Kong et al., “Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts,” Nature Medicine, vol. 9, no. 9, pp. 1195–1201, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Passier, L. W. van Laake, and C. L. Mummery, “Stem-cell-based therapy and lessons from the heart,” Nature, vol. 453, no. 7193, pp. 322–329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Li, A. Lee, M. Huang et al., “Imaging survival and function of transplanted cardiac resident stem cells,” Journal of the American College of Cardiology, vol. 53, no. 14, pp. 1229–1240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. G. Latronico, M. Coletta, E. Vivarelli et al., “Isolation and expansion of adult cardiac stem cells from human and murine heart,” Circulation Research, vol. 95, no. 9, pp. 911–921, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Linke, P. Müller, D. Nurzynska et al., “Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 25, pp. 8966–8971, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Barile, I. Chimenti, R. Gaetani et al., “Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration,” Nature Clinical Practice Cardiovascular Medicine, vol. 4, no. 1, pp. S9–S14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Yamada, X.-D. Wang, S.-I. Yokoyama, N. Fukuda, and N. Takakura, “Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium,” Biochemical and Biophysical Research Communications, vol. 342, no. 2, pp. 662–670, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. M. Smits, P. van Vliet, C. H. Metz et al., “Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology,” Nature Protocols, vol. 4, no. 2, pp. 232–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Loffler and H. Hauner, “Adipose tissue development: the role of precursor cells and adipogenic factors. Part II: the regulation of the adipogenic conversion by hormones and serum factors,” Klinische Wochenschrift, vol. 65, no. 17, pp. 812–817, 1987. View at Google Scholar · View at Scopus
  15. J. M. Gimble, A. J. Katz, and B. A. Bunnell, “Adipose-derived stem cells for regenerative medicine,” Circulation Research, vol. 100, no. 9, pp. 1249–1260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Miyahara, N. Nagaya, K. Masaharu et al., “Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction,” Nature Medicine, vol. 12, no. 4, pp. 459–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Mazo, V. Planat-Bénard, G. Abizanda et al., “Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction,” European Journal of Heart Failure, vol. 10, no. 5, pp. 454–462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. P. A. Zuk, M. Zhu, P. Ashjian et al., “Human adipose tissue is a source of multipotent stem cells,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4279–4295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Lü, S. Liu, W. He et al., “Bioreactor cultivation enhances NTEB formation and differentiation of NTES cells into cardiomyocytes,” Cloning and Stem Cells, vol. 10, no. 3, pp. 363–370, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Léobon, J. Roncalli, C. Joffre et al., “Adipose-derived cardiomyogenic cells: in vitro expansion and functional improvement in a mouse model of myocardial infarction,” Cardiovascular Research, vol. 83, no. 4, pp. 757–767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Di Felice, A. De Luca, M. L. Colorito et al., “Cardiac stem cell research: an elephant in the room?” Anatomical Record, vol. 292, no. 3, pp. 449–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Pouly, P. Bruneval, C. Mandet et al., “Cardiac stem cells in the real world,” Journal of Thoracic and Cardiovascular Surgery, vol. 135, no. 3, pp. 673–678, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Yamada, S.-I. Yokoyama, X.-D. Wang, N. Fukuda, and N. Takakura, “Cardiac stem cells in brown adipose tissue express CD133 and induce bone marrow nonhematopoietic cells to differentiate into cardiomyocytes,” Stem Cells, vol. 25, no. 5, pp. 1326–1333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Georges, R. P. Muirhead, L. Williams et al., “Comparison of size, viability, and function of fetal pig islet-like cell clusters after digestion using collagenase or liberase,” Cell Transplantation, vol. 11, no. 6, pp. 539–545, 2002. View at Google Scholar · View at Scopus
  25. H. Wang, C. A. Van Blitterswijk, M. Bertrand-De Haas, A. H. Schuurman, and E. N. Lamme, “Improved enzymatic isolation of fibroblasts for the creation of autologous skin substitutes,” In Vitro Cellular and Developmental Biology—Animal, vol. 40, no. 8-9, pp. 268–277, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. D. M. Hayman, T. J. Blumberg, C. C. Scott, and K. A. Athanasiou, “The effects of isolation on chondrocyte gene expression,” Tissue Engineering, vol. 12, no. 9, pp. 2573–2581, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Pilgaard, P. Lund, J. G. Rasmussen, T. Fink, and V. Zachar, “Comparative analysis of highly defined proteases for the isolation of adipose tissue-derived stem cells,” Regenerative Medicine, vol. 3, no. 5, pp. 705–715, 2008. View at Publisher · View at Google Scholar · View at Scopus