Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 218590, 26 pages
http://dx.doi.org/10.1155/2010/218590
Review Article

Emerging Vaccine Informatics

1Department of Microbiology and Immunology, Unit for Laboratory Animal Medicine, Center for Computational Medicine and Bioinformatics, and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
2Novartis Vaccines and Diagnostics, 53100 Siena, Italy
3EpiVax, Inc., Providence, RI 02903, USA
4Institute for Immunology and Informatics, University of Rhode Island, Providence, RI 02903, USA
5HIV Vaccine and Special Studies Team, Centers for Disease Control and Prevention (CDC/DHAP/EB), Atlanta, GA 30333, USA

Received 8 December 2010; Accepted 31 December 2010

Academic Editor: Rodomiro Ortiz

Copyright © 2010 Yongqun He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO) has been initiated to integrate various vaccine data and support automated reasoning.