Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 289360, 10 pages
http://dx.doi.org/10.1155/2010/289360
Research Article

Neutrophils Compromise Retinal Pigment Epithelial Barrier Integrity

1The Arnold and Mabel Beckman Macular Research Center at the Doheny Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
2Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
3Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
4Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA

Received 8 July 2009; Revised 15 October 2009; Accepted 19 November 2009

Academic Editor: Karl Chai

Copyright © 2010 Jiehao Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. Campochiaro, J. A. Bryan III, B. P. Conway, and E. H. Jaccoma, “Intravitreal chemotactic and mitogenic activity. Implication of blood-retinal barrier breakdown,” Archives of Ophthalmology, vol. 104, no. 11, pp. 1685–1687, 1986. View at Google Scholar · View at Scopus
  2. E. H. Jaccoma, B. P. Conway, and P. A. Campochiaro, “Cryotherapy causes extensive breakdown of the blood-retinal barrier. A comparison with argon laser photocoagulation,” Archives of Ophthalmology, vol. 103, no. 11, pp. 1728–2730, 1985. View at Google Scholar · View at Scopus
  3. H. Canataroglu, I. Varinli, A. A. Ozcan, A. Canataroglu, F. Doran, and S. Varinli, “Interleukin (IL)-6, interleukin (IL)-8 levels and cellular composition of the vitreous humor in proliferative diabetic retinopathy, proliferative vitreoretinopathy, and traumatic proliferative vitreoretinopathy,” Ocular Immunology and Inflammation, vol. 13, no. 5, pp. 375–381, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Zheng and S. S. Atherton, “Cytokine profiles and inflammatory cells during HSV-1-induced acute retinal necrosis,” Investigative Ophthalmology and Visual Science, vol. 46, no. 4, pp. 1356–1363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Thumann, S. Hoffmann, and D. R. Hinton, “Cell biology of the retinal pigment epithelium,” in Retina, S. Ryan, Ed., vol. 1, pp. 137–152, Elsevier; Mosby, London, UK, 4th edition, 2005. View at Google Scholar
  6. B. S. Fine, “Limiting membranes of the sensory retina and pigment epithelium. An electron microscopic study,” Archives of Ophthalmology, vol. 66, no. 6, pp. 847–860, 1961. View at Google Scholar
  7. B. R. Stevenson, M. B. Heintzelman, J. M. Anderson, S. Citi, and M. S. Mooseker, “ZO-1 and cingulin: tight junction proteins with distsinct identities and localizations,” American Journal of Physiology, vol. 257, no. 4, pp. C621–C628, 1989. View at Google Scholar · View at Scopus
  8. B. R. Stevenson and B. H. Keon, “The tight junction: morphology to molecules,” Annual Review of Cell and Developmental Biology, vol. 14, pp. 89–109, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Jin, E. Barron, S. He, S. J. Ryan, and D. R. Hinton, “Regulation of RPE intercellular junction integrity and function by hepatocyte growth factor,” Investigative Ophthalmology and Visual Science, vol. 43, no. 8, pp. 2782–2790, 2002. View at Google Scholar · View at Scopus
  10. T. J. Williams, P. J. Jose, C. V. Wedmore, and M. J. Forrest, “Blood flow, vascular permeability and the role of neutrophils,” Agents and Actions Supplements, vol. 11, pp. 39–49, 1982. View at Google Scholar · View at Scopus
  11. C. V. Wedmore and T. J. Williams, “Control of vascular permeability by polymorphonuclear leukocytes in inflammation,” Nature, vol. 289, no. 5799, pp. 646–650, 1981. View at Google Scholar · View at Scopus
  12. V. Witko-Sarsat, P. Rieu, B. Descamps-Latscha, P. Lesavre, and L. Halbwachs-Mecarelli, “Neutrophils: molecules, functions and pathophysiological aspects,” Laboratory Investigation, vol. 80, no. 5, pp. 617–654, 2000. View at Google Scholar · View at Scopus
  13. A. M. Joussen, V. Poulaki, N. Mitsiades et al., “Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes,” The FASEB Journal, vol. 17, no. 1, pp. 76–78, 2003. View at Google Scholar · View at Scopus
  14. J. Cao, D. S. McLeod, C. A. Merges, and G. A. Lutty, “Choriocapillaris degeneration and related pathologic changes in human diabetic eyes,” Archives of Ophthalmology, vol. 116, no. 5, pp. 589–597, 1998. View at Google Scholar · View at Scopus
  15. G. A. Lutty, J. Cao, and D. S. McLeod, “Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid,” American Journal of Pathology, vol. 151, no. 3, pp. 707–714, 1997. View at Google Scholar · View at Scopus
  16. J. Zhou, L. Pham, N. Zhang et al., “Neutrophils promote experimental choroidal neovascularization,” Molecular Vision, vol. 11, pp. 414–424, 2005. View at Google Scholar · View at Scopus
  17. V. M. Elner, M. A. Burnstine, R. M. Strieter, S. L. Kunkel, and S. G. Elner, “Cell-associated human retinal pigment epithelium interleukin-8 and monocyte chemotactic protein-1: immunochemical and in-situ hybridization-analyses,” Experimental Eye Research, vol. 65, no. 6, pp. 781–789, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Hoffmann, S. He, M. Ehren, S. J. Ryan, P. Wiedemann, and D. R. Hinton, “MMP-2 and MMP-9 secretion by RPE is stimulated by angiogenic molecules found in choroidal neovascular membranes,” Retina, vol. 26, no. 4, pp. 454–461, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Ikeda, H. Saito, T. Inoue et al., “Malnutrition impairs CD11b/CD18 expression on circulating polymorphonuclear neutrophils and subsequent exudation into inflammatory sites in the early phase of glycogen-induced murine peritonitis,” Journal of Parenteral and Enteral Nutrition, vol. 24, no. 5, pp. 276–279, 2000. View at Google Scholar · View at Scopus
  20. M. S. Mulligan, A. B. Lentsch, M. Miyasaka, and P. A. Ward, “Cytokine and adhesion molecule requirements for neutrophil recruitment during glycogen-induced peritonitis,” Inflammation Research, vol. 47, no. 6, pp. 251–255, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Zhang, R. Kannan, C. T. Okamoto, S. J. Ryan, V. H. L. Lee, and D. R. Hinton, “Characterization of brimonidine transport in retinal pigment epithelium,” Investigative Ophthalmology and Visual Science, vol. 47, no. 1, pp. 287–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. D. A. Frambach, J. L. Valentine, and J. J. Weiter, “Initial observations of rabbit retinal pigment epithelium-choroid-sclera preparations,” Investigative Ophthalmology and Visual Science, vol. 29, no. 5, pp. 814–817, 1988. View at Google Scholar · View at Scopus
  23. H. Ueda, Y. Horibe, K.-J. Kim, and V. H. L. Lee, “Functional characterization of organic cation drug transport in the pigmented rabbit conjunctiva,” Investigative Ophthalmology and Visual Science, vol. 41, no. 3, pp. 870–876, 2000. View at Google Scholar · View at Scopus
  24. R. Kannan, M. Jin, M.-A. Gamulescu, and D. R. Hinton, “Ceramide-induced apoptosis: role of catalase and hepatocyte growth factor,” Free Radical Biology and Medicine, vol. 37, no. 2, pp. 166–175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Sonoda, C. Spee, E. Barron, S. J. Ryan, R. Kannan, and D. R. Hinton, “A protocol for the culture and differentiation of highly polarized human retinal pigment epithelial cells,” Nature protocols, vol. 4, no. 5, pp. 662–673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Behzadian, X.-L. Wang, L. J. Windsor, N. Ghaly, and R. B. Caldwell, “TGF-β increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function,” Investigative Ophthalmology and Visual Science, vol. 42, no. 3, pp. 853–859, 2001. View at Google Scholar · View at Scopus
  27. M. K. Y. Siu, W. M. Lee, and C. Y. Cheng, “The interplay of collagen IV, tumor necrosis factor-α, gelatinase B (matrix metalloprotease-9), and tissue inhibitor of metalloproteases-1 in the basal lamina regulates sertoli cell-tight junction dynamics in the rat testis,” Endocrinology, vol. 144, no. 1, pp. 371–387, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Keck, J. H. Balcom IV, C. Fernández-del Castillo, B. A. Antoniu, and A. L. Warshaw, “Matrix metalloproteinase-9 promotes neutrophil migration and alveolar capillary leakage in pancreatitis-associated lung injury in the rat,” Gastroenterology, vol. 122, no. 1, pp. 188–201, 2002. View at Google Scholar · View at Scopus
  29. J. Zhou, S. A. Stohlman, D. R. Hinton, and N. W. Marten, “Neutrophils promote mononuclear cell infiltration during viral-induced encephalitis,” Journal of Immunology, vol. 170, no. 6, pp. 3331–3336, 2003. View at Google Scholar · View at Scopus
  30. I. J. Crane and J. Liversidge, “Mechanisms of leukocyte migration across the blood-retina barrier,” Seminars in Immunopathology, vol. 30, no. 2, pp. 165–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. B. Jonas, I. Kreissig, and R. Degenring, “Intravitreal triamcinolone acetonide for treatment of intraocular proliferative, exudative, and neovascular diseases,” Progress in Retinal and Eye Research, vol. 24, no. 5, pp. 587–611, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. L. I. McKay and J. A. Cidlowski, “Molecular control of immune/inflammatory responses: interactions between nuclear factor-κB and steroid receptor-signaling pathways,” Endocrine Reviews, vol. 20, no. 4, pp. 435–459, 1999. View at Google Scholar · View at Scopus
  33. H. Tempfer, R. Gehwolf, C. Lehner et al., “Effects of crystalline glucocorticoid triamcinolone acetonide on cultered human supraspinatus tendon cells,” Acta Orthopaedica, vol. 80, pp. 357–362, 2009. View at Google Scholar
  34. J. M. Gidday, Y. G. Gasche, J.-C. Copin et al., “Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia,” American Journal of Physiology, vol. 289, no. 2, pp. H558–H568, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. J. Giebel, G. Menicucci, P. G. McGuire, and A. Das, “Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier,” Laboratory Investigation, vol. 85, no. 5, pp. 597–607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Lemjabbar, P. Gosset, C. Lamblin et al., “Contribution of 92?kDa gelatinase/type IV collagenase in bronchial inflammation during status asthmaticus,” American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 4, pp. 1298–1307, 1999. View at Google Scholar · View at Scopus
  37. A. K. Leone, J. A. Chun, C. L. Koehler, J. Caranto, and J. M. King, “Effect of proinflammatory cytokines, tumor necrosis factor-α and interferon-γ on epithelial barrier function and matrix metalloproteinase-9 in madin darby canine kidney cells,” Cellular Physiology and Biochemistry, vol. 19, no. 1–4, pp. 99–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Ichiyasu, J. M. McCormack, K. M. McCarthy, D. Dombkowski, F. I. Preffer, and E. E. Schneeberger, “Matrix metalloproteinase-9-deficient dendritic cells have impaired migration through tracheal epithelial tight junctions,” American Journal of Respiratory Cell and Molecular Biology, vol. 30, no. 6, pp. 761–770, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Caron, R. R. Desrosiers, and R. Béliveau, “Ischemia injury alters endothelial cell properties of kidney cortex: stimulation of MMP-9,” Experimental Cell Research, vol. 310, no. 1, pp. 105–116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Gautam, A. M. Olofsson, H. Herwald et al., “Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular permeability,” Nature Medicine, vol. 7, no. 10, pp. 1123–1127, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. C. D. Collard, K. A. Park, M. C. Montalto et al., “Neutrophil-derived glutamate regulates vascular endothelial barrier function,” Journal of Biological Chemistry, vol. 277, no. 17, pp. 14801–14811, 2002. View at Publisher · View at Google Scholar · View at Scopus