Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 479364, 18 pages
http://dx.doi.org/10.1155/2010/479364
Review Article

Molecular and Therapeutic Potential and Toxicity of Valproic Acid

Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), “Fondation de Recherche Cancer et Sang”, Hôpital Kirchberg, Kirchberg 2540, Luxembourg

Received 7 January 2010; Revised 3 May 2010; Accepted 6 June 2010

Academic Editor: Ronald E. Baynes

Copyright © 2010 Sébastien Chateauvieux et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Burton, “On the propyl derivatives and decomposition products of ethylacetoacetate,” American Chemical Journal, vol. 3, pp. 385–395, 1882. View at Google Scholar
  2. H. Meunier, G. Carraz, Y. Neunier, P. Eymard, and M. Aimard, “Pharmacodynamic properties of N-dipropylacetic acid,” Thérapie, vol. 18, pp. 435–438, 1963. View at Google Scholar
  3. S. Lebreton, G. Carraz, H. Behriel, and H. Meunier, “Pharmacodynamic properties of 2,2-dipropylacetic Acid. III,” Therapie, vol. 19, pp. 457–467, 1984. View at Google Scholar
  4. S. Lebreton, G. Carraz, H. Meunier, and H. Behriel, “Pharmacodynamic properties of 2,2-dipropylacetic Acid. 2d report on its anti-epileptic properties,” Therapie, vol. 19, pp. 451–456, 1964. View at Google Scholar
  5. E. Mesdjian, L. Ciesielski, and M. Valli, “Sodium valproate: kinetic profile and effects on GABA levels in various brain areas of the rat,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 6, no. 3, pp. 223–233, 1982. View at Google Scholar · View at Scopus
  6. M. L. Zeise, S. Kasparow, and W. Zieglgansberger, “Valproate suppresses N-methyl-D-aspartate-evoked transient depolarizations in the rat neocortex in vitro,” Brain Research, vol. 544, no. 2, pp. 345–348, 1991. View at Publisher · View at Google Scholar · View at Scopus
  7. P.-W. Gean, C.-C. Huang, C.-R. Hung, and J.-J. Tsai, “Valproic acid suppresses the synaptic response mediated by the NMDA receptors in rat amygdalar slices,” Brain Research Bulletin, vol. 33, no. 3, pp. 333–336, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. A. M. J. VanDongen, M. G. VanErp, and R. A. Voskuyl, “Valproate reduces excitability by blockage of sodium and potassium conductance,” Epilepsia, vol. 27, no. 3, pp. 177–182, 1986. View at Google Scholar · View at Scopus
  9. S. L. McElroy, P. E. Keck Jr., H. G. Pope Jr., and J. I. Hudson, “Valproate in psychiatric disorders: literature review and clinical guidelines,” Journal of Clinical Psychiatry, vol. 50, supplement, pp. 23–29, 1989. View at Google Scholar · View at Scopus
  10. J. R. Calabrese and G. A. Delucchi, “Phenomenology of rapid cycling manic depression and its treatment with valproate,” Journal of Clinical Psychiatry, supplement, pp. 30–34, 1989. View at Google Scholar · View at Scopus
  11. G. Erenberg, A. D. Rothner, C. E. Henry, and R. P. Cruse, “Valproic acid in the treatment of intractable absence seizures in children. A single-blind clinical and quantitative EEG study,” American Journal of Diseases of Children, vol. 136, no. 6, pp. 526–529, 1982. View at Google Scholar · View at Scopus
  12. G. Coppola, G. Auricchio, R. Federico, M. Carotenuto, and A. Pascotto, “Lamotrigine versus valproic acid as first-line monotherapy in newly diagnosed typical absence seizures: an open-label, randomized, parallel-group study,” Epilepsia, vol. 45, no. 9, pp. 1049–1053, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. C. Dean and J. K. Penry, “Valproate monotherapy in 30 patients with partial seizures,” Epilepsia, vol. 29, no. 2, pp. 140–144, 1988. View at Google Scholar · View at Scopus
  14. S. Calleja, J. Salas-Puig, R. Ribacoba, and C. H. Lahoz, “Evolution of juvenile myoclonic epilepsy treated from the outset with sodium valproate,” Seizure, vol. 10, no. 6, pp. 424–427, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. L. Friis, “Valproate in the treatment of epilepsy in people with intellectual disability,” Journal of Intellectual Disability Research, vol. 42, supplement 1, pp. 32–35, 1998. View at Google Scholar · View at Scopus
  16. R. R. Rosato, J. A. Almenara, and S. Grant, “The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1,” Cancer Research, vol. 63, no. 13, pp. 3637–3645, 2003. View at Google Scholar · View at Scopus
  17. A. Martirosyan, S. Leonard, X. Shi, B. Griffith, P. Gannett, and J. Strobl, “Actions of a histone deacetylase inhibitor NSC3852 (5-nitroso-8-quinolinol) link reactive oxygen species to cell differentiation and apoptosis in MCF-7 human mammary tumor cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 317, no. 2, pp. 546–552, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. J. Savickiene, V.-V. Borutinskaite, G. Treigyte, K.-E. Magnusson, and R. Navakauskiene, “The novel histone deacetylase inhibitor BML-210 exerts growth inhibitory, proapoptotic and differentiation stimulating effects on the human leukemia cell lines,” European Journal of Pharmacology, vol. 549, no. 1–3, pp. 9–18, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. Y. Chen, R.-L. Pan, X.-L. Zhang, J.-Z. Shao, L.-X. Xiang, X.-J. Dong, and G.-R. Zhang, “Induction of hepatic differentiation of mouse bone marrow stromal stem cells by the histone deacetylase inhibitor VPA,” Journal of Cellular and Molecular Medicine, vol. 13, no. 8 B, pp. 2582–2592, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. C. A. Bradbury, F. L. Khanim, and F. L. Khanim, “Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors,” Leukemia, vol. 19, no. 10, pp. 1751–1759, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. S. K. Bhattacharya, S. Ramchandani, N. Cervoni, and M. Szyf, “A mammalian protein with specific demethylase activity for mCpG DNA,” Nature, vol. 397, no. 6720, pp. 579–583, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. S. Ramchandani, S. K. Bhattacharya, N. Cervoni, and M. Szyf, “DNA methylation is a reversible biological signal,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 11, pp. 6107–6112, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Cervoni and M. Szyf, “Demethylase activity is directed by histone acetylation,” Journal of Biological Chemistry, vol. 276, no. 44, pp. 40778–40787, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. N. Cervoni, N. Detich, S.-B. Seo, D. Chakravarti, and M. Szyf, “The oncoprotein set/TAF-1β, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25026–25031, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. D. C. Marchion, E. Bicaku, A. I. Daud, D. M. Sullivan, and P. N. Munster, “Valproic acid alters chromatin structure by regulation of chromatin modulation proteins,” Cancer Research, vol. 65, no. 9, pp. 3815–3822, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. K. P. Nightingale, S. Gendreizig, D. A. White, C. Bradbury, F. Hollfelder, and B. M. Turner, “Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation,” Journal of Biological Chemistry, vol. 282, no. 7, pp. 4408–4416, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. K. N. Harikrishnan, T. C. Karagiannis, M. Z. Chow, and A. El-Osta, “Effect of valproic acid on radiation-induced DNA damage in euchromatic and heterochromatic compartments,” Cell Cycle, vol. 7, no. 4, pp. 468–476, 2008. View at Google Scholar · View at Scopus
  28. S. Lunke and A. El-Osta, “The emerging role of epigenetic modifications and chromatin remodeling in spinal muscular atrophy,” Journal of Neurochemistry, vol. 109, no. 6, pp. 1557–1569, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. S. Minucci and P. G. Pelicci, “Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer,” Nature Reviews Cancer, vol. 6, no. 1, pp. 38–51, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. R. Pastorelli, G. Ferrari, and A. Gozzini, “CML blasts modify the acetylation pattern of non histone proteins after short chain fatty acid histone deacetylase inhibitor treatment,” The American Society of Hematology, vol. 106, no. 11, p. 2884, 2005. View at Google Scholar
  31. T. May and B. Rambeck, “Serum concentrations of valproic acid: influence of dose and comedication,” Therapeutic Drug Monitoring, vol. 7, no. 4, pp. 387–390, 1985. View at Google Scholar · View at Scopus
  32. R. A. Hamilton, W. R. Garnett, B. J. Kline, and J. M. Pellock, “Effects of food on valproic acid absorption,” American Journal of Hospital Pharmacy, vol. 38, no. 10, pp. 1490–1493, 1981. View at Google Scholar · View at Scopus
  33. S. Lefebvre, P. Burlet, and P. Burlet, “Correlation between severity and SMN protein level in spinal muscular atrophy,” Nature Genetics, vol. 16, no. 3, pp. 265–269, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. T. Pan, X. Li, W. Xie, J. Jankovic, and W. Le, “Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells,” FEBS Letters, vol. 579, no. 30, pp. 6716–6720, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. P.-S. Chen, G.-S. Peng, and G.-S. Peng, “Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes,” Molecular Psychiatry, vol. 11, no. 12, pp. 1116–1125, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. P. S. Chen, C.-C. Wang, and C.-C. Wang, “Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity,” Neuroscience, vol. 149, no. 1, pp. 203–212, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. B. Monti, E. Polazzi, L. Batti, C. Crochemore, M. Virgili, and A. Contestabile, “Alpha-synuclein protects cerebellar granule neurons against 6-hydroxydopamine-induced death,” Journal of Neurochemistry, vol. 103, no. 2, pp. 518–530, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. B. Monti, V. Gatta, F. Piretti, S. S. Raffaelli, M. Virgili, and A. Contestabile, “Valproic acid is neuroprotective in the rotenone rat model of Parkinson's disease: involvement of α-synuclein,” Neurotoxicity Research, vol. 17, no. 2, pp. 130–140, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. I. Pearce, K. W. G. Heathfield, and J. M. S. Pearce, “Valproate sodium in Huntington chorea,” Archives of Neurology, vol. 34, no. 5, pp. 308–309, 1977. View at Google Scholar · View at Scopus
  40. D. Zádori, A. Geisz, E. Vámos, L. Vécsei, and P. Klivényi, “Valproate ameliorates the survival and the motor performance in a transgenic mouse model of Huntington's disease,” Pharmacology Biochemistry and Behavior, vol. 94, no. 1, pp. 148–153, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. S. Armeanu, M. Bitzer, and M. Bitzer, “Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate,” Cancer Research, vol. 65, no. 14, pp. 6321–6329, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. Ø. Kristensen, T. Lølandsmo, Å. Isaksen, J.-K. Vederhus, and T. Clausen, “Treatment of polydrug-using opiate dependents during withdrawal: towards a standardisation of treatment,” BMC Psychiatry, vol. 6, article no. 54, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. G. Lehrman, I. B. Hogue, and I. B. Hogue, “Depletion of latent HIV-1 infection in vivo: a proof-of-concept study,” Lancet, vol. 366, no. 9485, pp. 549–555, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. N. Sagot-Lerolle, A. Lamine, and A. Lamine, “Prolonged valproic acid treatment does not reduce the size of latent HIV reservoir,” AIDS, vol. 22, no. 10, pp. 1125–1129, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. P. B. Gurpur, J. Liu, D. J. Burkin, and S. J. Kaufman, “Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy,” American Journal of Pathology, vol. 174, no. 3, pp. 999–1008, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. P. A. Marks, V. M. Richon, and R. A. Rifkind, “Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells,” Journal of the National Cancer Institute, vol. 92, no. 15, pp. 1210–1216, 2000. View at Google Scholar · View at Scopus
  47. A. Melnick and J. D. Licht, “Histone deacetylases as therapeutic targets in hematologic malignancies,” Current Opinion in Hematology, vol. 9, no. 4, pp. 322–332, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. D. M. Vigushin and R. C. Coombes, “Histone deacetylase inhibitors in cancer treatment,” Anti-Cancer Drugs, vol. 13, no. 1, pp. 1–13, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. Y.-C. Cheng, H. Lin, M.-J. Huang, J.-M. Chow, S. Lin, and H. E. Liu, “Downregulation of c-Myc is critical for valproic acid-induced growth arrest and myeloid differentiation of acute myeloid leukemia,” Leukemia Research, vol. 31, no. 10, pp. 1403–1411, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. M. Schuchmann, H. Schulze-Bergkamen, and H. Schulze-Bergkamen, “Histone deacetylase inhibition by valproic acid down-regulates c-FLIP/CASH and sensitizes hepatoma cells towards CD95- and TRAIL receptor-mediated apoptosis and chemotherapy,” Oncology Reports, vol. 15, no. 1, pp. 227–230, 2006. View at Google Scholar · View at Scopus
  51. M. F. Ziauddin, W.-S. Yeow, and W.-S. Yeow, “Valproic acid, an antiepileptic drug with histone deacetylase inhibitory activity, potentiates the cytotoxic effect of Apo2L/TRAIL on cultured thoracic cancer cells through mitochondria-dependent caspase activation,” Neoplasia, vol. 8, no. 6, pp. 446–457, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. L. Lagneaux, N. Gillet, and N. Gillet, “Valproic acid induces apoptosis in chronic lymphocytic leukemia cells through activation of the death receptor pathway and potentiates TRAIL response,” Experimental Hematology, vol. 35, no. 10, pp. 1527–1537, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. G. Iacomino, M. C. Medici, and G. L. Russo, “Valproic acid sensitizes K562 erythroleukemia cells to TRAIL/Apo2L-induced apoptosis,” Anticancer Research, vol. 28, no. 2A, pp. 855–864, 2008. View at Google Scholar · View at Scopus
  54. A. Phillips, T. Bullock, and N. Plant, “Sodium valproate induces apoptosis in the rat hepatoma cell line, FaO,” Toxicology, vol. 192, no. 2-3, pp. 219–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Angelucci, A. Valentini, and A. Valentini, “Valproic acid induces apoptosis in prostate carcinoma cell lines by activation of multiple death pathways,” Anti-Cancer Drugs, vol. 17, no. 10, pp. 1141–1150, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. G. Chen, L.-D. Huang, Y.-M. Jiang, and H. K. Manji, “The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3,” Journal of Neurochemistry, vol. 72, no. 3, pp. 1327–1330, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. Z. Marinova, M. Ren, and M. Ren, “Valproic acid induces functional heat-shock protein 70 via Class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation,” Journal of Neurochemistry, vol. 111, no. 4, pp. 976–987, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. D. Y. Greenblatt, M. A. Cayo, J. T. Adler, L. Ning, M. R. Haymart, M. Kunnimalaiyaan, and H. Chen, “Valproic acid activates Notch1 signaling and induces apoptosis in medullary thyroid cancer cells,” Annals of Surgery, vol. 247, no. 6, pp. 1036–1040, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. A. Lampen, S. Siehler, U. Ellerbeck, M. Göttlicher, and H. Nau, “New molecular bioassays for the estimation of the teratogenic potency of valproic acid derivatives in vitro: activation of the peroxisomal proliferator-activated receptor (PPARδ),” Toxicology and Applied Pharmacology, vol. 160, no. 3, pp. 238–249, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. U. Werling, S. Siehler, M. Litfin, H. Nau, and M. Göttlicher, “Induction of differentiation in F9 cells and activation of peroxisome proliferator-activated receptor δ by valproic acid and its teratogenic derivatives,” Molecular Pharmacology, vol. 59, no. 5, pp. 1269–1276, 2001. View at Google Scholar · View at Scopus
  61. M. J. Lan, P. Yuan, G. Chen, and H. K. Manji, “Neuronal peroxisome proliferator-activated receptor γ signaling: regulation by mood-stabilizer valproate,” Journal of Molecular Neuroscience, vol. 35, no. 2, pp. 225–234, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. S. Togi, S. Kamitani, S. Kawakami, O. Ikeda, R. Muromoto, A. Nanbo, and T. Matsuda, “HDAC3 influences phosphorylation of STAT3 at serine 727 by interacting with PP2A,” Biochemical and Biophysical Research Communications, vol. 379, no. 2, pp. 616–620, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. M. Snyder, X.-Y. Huang, and J. J. Zhang, “Identification of novel direct Stat3 target genes for control of growth and differentiation,” Journal of Biological Chemistry, vol. 283, no. 7, pp. 3791–3798, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. J. Hallas, S. Friis, and S. Friis, “Cancer risk in long-term users of valproate: a population-based case-control study,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 6, pp. 1714–1719, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. L. Citrome, C. B. Shope, K. A. Nolan, P. Czobor, and J. Volavka, “Risperidone alone versus risperidone plus valproate in the treatment of patients with schizophrenia and hostility,” International Clinical Psychopharmacology, vol. 22, no. 6, pp. 356–362, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. I. D. Glick, J. Bosch, and D. E. Casey, “A double-blind randomized trial of mood stabilizer augmentation using lamotrigine and valproate for patients with schizophrenia who are stabilized and partially responsive,” Journal of Clinical Psychopharmacology, vol. 29, no. 3, pp. 267–271, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. M. R. Ashrafi, R. Shabanian, G. R. Zamani, and F. Mahfelati, “Sodium Valproate versus Propranolol in paediatric migraine prophylaxis,” European Journal of Paediatric Neurology, vol. 9, no. 5, pp. 333–338, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. E. Lonergan and J. Luxenberg, “Valproate preparations for agitation in dementia,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD003945, 2009. View at Google Scholar · View at Scopus
  69. D. Novick, A. Gonzalez-Pinto, J. M. Haro, J. Bertsch, C. Reed, E. Perrin, and M. Tohen, “Translation of randomised controlled trial findings into clinical practice: comparison of olanzapine and valproate in the EMBLEM study,” Pharmacopsychiatry, vol. 42, no. 4, pp. 145–152, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. L. A. Smith, V. R. Cornelius, J. M. Azorin, G. Perugi, E. Vieta, A. H. Young, and C. L. Bowden, “Valproate for the treatment of acute bipolar depression: systematic review and meta-analysis,” Journal of Affective Disorders, vol. 122, no. 1, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. S. Piepers, J. H. Veldink, and J. H. Veldink, “Randomized sequential trial of valproic acid in amyotrophic lateral sclerosis,” Annals of Neurology, vol. 66, no. 2, pp. 227–234, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. K. J. Swoboda, C. B. Scott, and C. B. Scott, “Phase II open label study of valproic acid in spinal muscular atrophy,” PLoS ONE, vol. 4, no. 5, Article ID e5268, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. R. P. Agrawal, J. Goswami, S. Jain, and D. K. Kochar, “Management of diabetic neuropathy by sodium valproate and glyceryl trinitrate spray: a prospective double-blind randomized placebo-controlled study,” Diabetes Research and Clinical Practice, vol. 83, no. 3, pp. 371–378, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. C. Moog, G. Kuntz-Simon, C. Caussin-Schwemling, and G. Obert, “Sodium valproate, an anticonvulsant drug, stimulates human immunodeficiency virus type 1 replication independently of glutathione levels,” Journal of General Virology, vol. 77, part 9, pp. 1993–1999, 1996. View at Google Scholar · View at Scopus
  75. M. Witvrouw, J.-C. Schmit, and J.-C. Schmit, “Cell type-dependent effect of sodium valproate on human immunodeficiency virus type 1 replication in vitro,” AIDS Research and Human Retroviruses, vol. 13, no. 2, pp. 187–192, 1997. View at Google Scholar · View at Scopus
  76. R. N. Shaw, J. L. Arbiser, and M. K. Offermann, “Valproic acid induces human herpesvirus 8 lytic gene expression in BCBL-1 cells,” AIDS, vol. 14, no. 7, pp. 899–902, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Lechowicz, D. P. Dittmer, and D. P. Dittmer, “Molecular and clinical assessment in the treatment of AIDS Kaposi sarcoma with valproic acid,” Clinical Infectious Diseases, vol. 49, no. 12, pp. 1946–1949, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. F. L. Khanim, C. A. Bradbury, and C. A. Bradbury, “Elevated FOSB-expression; a potential marker of valproate sensitivity in AML,” British Journal of Haematology, vol. 144, no. 3, pp. 332–341, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. A. Kuendgen, C. Strupp, and C. Strupp, “Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid,” Blood, vol. 104, no. 5, pp. 1266–1269, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. G. Bug, M. Ritter, and M. Ritter, “Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia,” Cancer, vol. 104, no. 12, pp. 2717–2725, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. Y. Inoue, T. Suzuki, and T. Suzuki, “Treatment with valproic acid for myelofibrosis with myeloid metaplasia,” Annals of Hematology, vol. 84, no. 12, pp. 833–834, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. A. Kuendgen, S. Knipp, and S. Knipp, “Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia,” Annals of Hematology, Supplement, vol. 84, supplement 1, pp. 61–66, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. A. Kuendgen, M. Schmid, and M. Schmid, “The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia,” Cancer, vol. 106, no. 1, pp. 112–119, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. A. O. Soriano, H. Yang, and H. Yang, “Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome,” Blood, vol. 110, no. 7, pp. 2302–2308, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. M. T. Voso, V. Santini, and V. Santini, “Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes,” Clinical Cancer Research, vol. 15, no. 15, pp. 5002–5007, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. B. Stamatopoulos, N. Meuleman, C. De Bruyn, P. Mineur, P. Martiat, D. Bron, and L. Lagneaux, “Antileukemic activity of valproic acid in chronic lymphocytic leukemia B cells defined by microarray analysis,” Leukemia, vol. 23, pp. 2281–2289, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. A. Duenas-Gonzalez, M. Candelaria, C. Perez-Plascencia, E. Perez-Cardenas, E. de la Cruz-Hernandez, and L. A. Herrera, “Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors,” Cancer Treatment Reviews, vol. 34, no. 3, pp. 206–222, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. A. Chavez-Blanco, C. Perez-Plasencia, and C. Perez-Plasencia, “Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines,” Cancer Cell International, vol. 6, article 2, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. C.-L. Chen, J. Sung, and J. Sung, “Valproic acid inhibits invasiveness in bladder cancer but not in prostate cancer cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 319, no. 2, pp. 533–542, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. P. Thelen, S. Schweyer, B. Hemmerlein, W. Wuttke, F. Seseke, and R. H. Ringert, “Expressional changes after histone deacetylase inhibition by valproic acid in LNCaP human prostate cancer cells,” International Journal of Oncology, vol. 24, no. 1, pp. 25–31, 2004. View at Google Scholar · View at Scopus
  91. Q. Xia, J. Sung, and J. Sung, “Chronic administration of valproic acid inhibits prostate cancer cell growth in vitro and in vivo,” Cancer Research, vol. 66, no. 14, pp. 7237–7244, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. X. Huang and B. Guo, “Adenomatous polyposis coli determines sensitivity to histone deacetylase inhibitor-induced apoptosis in colon cancer cells,” Cancer Research, vol. 66, no. 18, pp. 9245–9251, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. I. Friedmann, A. Atmaca, K. U. Chow, E. Jäger, and E. Weidmann, “Synergistic effects of valproic acid and mitomycin C in adenocarcinoma cell lines and fresh tumor cells of patients with colon cancer,” Journal of Chemotherapy, vol. 18, no. 4, pp. 415–420, 2006. View at Google Scholar · View at Scopus
  94. C. M. Olsen, E. T. M. Meussen-Elholm, L. S. Røste, and E. Taubøll, “Antiepileptic drugs inhibit cell growth in the human breast cancer cell line MCF7,” Molecular and Cellular Endocrinology, vol. 213, no. 2, pp. 173–179, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. N. P. Mongan and L. J. Gudas, “Valproic acid, in combination with all-trans retinoic acid and 5-aza-2'-deoxycytidine, restores expression of silenced RARβ2 in breast cancer cells,” Molecular Cancer Therapeutics, vol. 4, no. 3, pp. 477–486, 2005. View at Google Scholar · View at Scopus
  96. L. Hodges-Gallagher, C. D. Valentine, S. E. Bader, and P. J. Kushner, “Inhibition of histone deacetylase enhances the anti-proliferative action of antiestrogens on breast cancer cells and blocks tamoxifen-induced proliferation of uterine cells,” Breast Cancer Research and Treatment, vol. 105, no. 3, pp. 297–309, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. A. Pathil, S. Armeanu, and S. Armeanu, “HDAC inhibitor treatment of hepatoma cells induces both TRAIL-independent apoptosis and restoration of sensitivity to TRAIL,” Hepatology, vol. 43, no. 3, pp. 425–434, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. J. Cinatl Jr., J. Cinatl, and J. Cinatl, “Antitumor activity of sodium valproate in cultures of human neuroblastoma cells,” Anti-Cancer Drugs, vol. 7, no. 7, pp. 766–773, 1996. View at Google Scholar · View at Scopus
  99. M. Michaelis, T. Suhan, J. Cinatl, P. H. Driever, and J. Cinatl Jr., “Valproic acid and interferon-alpha synergistically inhibit neuroblastoma cell growth in vitro and in vivo,” International Journal of Oncology, vol. 25, no. 6, pp. 1795–1799, 2004. View at Google Scholar · View at Scopus
  100. C. L. Bacon, E. O'Driscoll, and C. M. Regan, “Valproic acid suppresses G1 phase-dependent sialylation of a 65 kDa glycoprotein in the C6 glioma cell cycle,” International Journal of Developmental Neuroscience, vol. 15, no. 6, pp. 777–784, 1997. View at Publisher · View at Google Scholar · View at Scopus
  101. C. M. Das, D. Aguilera, H. Vasquez, P. Prasad, M. Zhang, J. E. Wolff, and V. Gopalakrishnan, “Valproic acid induces p21 and topoisomerase-II (α/β) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines,” Journal of Neuro-Oncology, vol. 85, no. 2, pp. 159–170, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. M. G. Catalano, N. Fortunati, M. Pugliese, L. Costantino, R. Poli, O. Bosco, and G. Boccuzzi, “Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 3, pp. 1383–1389, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. A. Atmaca, S.-E. Al-Batran, and S.-E. Al-Batran, “Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial,” British Journal of Cancer, vol. 97, no. 2, pp. 177–182, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. C. Arce, C. Pérez-Plasencia, and C. Pérez-Plasencia, “A proof-of-principle study of epigenetics therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer,” PLoS One, vol. 1, no. 1, article e98, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. P. Munster, D. Marchion, and D. Marchion, “Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC,” Clinical Cancer Research, vol. 15, no. 7, pp. 2488–2496, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. A. I. Daud, J. Dawson, and J. Dawson, “Potentiation of a topoisomerase I inhibitor, karenitecin, by the histone deacetylase inhibitor valproic acid in melanoma: translational and phase l/ll clinical trial,” Clinical Cancer Research, vol. 15, no. 7, pp. 2479–2487, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. A. Rocca, S. Minucci, and S. Minucci, “A phase I-II study of the histone deacetylase inhibitor valproic acid plus chemoimmunotherapy in patients with advanced melanoma,” British Journal of Cancer, vol. 100, no. 1, pp. 28–36, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. S. Sharma, J. Symanowski, B. Wong et al., “A phase II clinical trial of oral valproic acid in patients with castration-resistant prostate cancers using an intensive biomarker sampling strategy,” Translational Oncology, vol. 1, no. 3, pp. 141–147, 2008. View at Google Scholar
  109. H.-Y. Yu, Y.-Z. Shen, Y. Sugiyama, and M. Hanano, “Drug interaction. Effects of salicylate on pharmacokinetics of valproic acid in rats,” Drug Metabolism and Disposition, vol. 18, no. 1, pp. 121–126, 1990. View at Google Scholar · View at Scopus
  110. D. Battino, M. Estienne, and G. Avanzini, “Clinical pharmacokinetics of antiepileptic drugs in paediatric patients. Part I: phenobarbital, primidone, valproic acid, ethosuximide and mesuximide,” Clinical Pharmacokinetics, vol. 29, no. 4, pp. 257–286, 1995. View at Google Scholar · View at Scopus
  111. N. Yamamura, K. Imura, H. Naganuma, and K. Nishimura, “Panipenem, a carbapenem antibiotic, enhances the glucuronidation of intravenously administered valproic acid in rats,” Drug Metabolism and Disposition, vol. 27, no. 6, pp. 724–730, 1999. View at Google Scholar · View at Scopus
  112. K. Yokogawa, S. Iwashita, and S. Iwashita, “Effect of meropenem on disposition kinetics of valproate and its metabolites in rabbits,” Pharmaceutical Research, vol. 18, no. 9, pp. 1320–1326, 2001. View at Publisher · View at Google Scholar · View at Scopus
  113. B. Rambeck and P. Wolf, “Lamotrigine clinical pharmacokinetics,” Clinical Pharmacokinetics, vol. 25, no. 6, pp. 433–443, 1993. View at Google Scholar · View at Scopus
  114. T. W. May, B. Rambeck, and U. Jürgens, “Serum concentrations of lamotrigine in epileptic patients: the influence of dose and comedication,” Therapeutic Drug Monitoring, vol. 18, no. 5, pp. 523–531, 1996. View at Publisher · View at Google Scholar · View at Scopus
  115. D. Battino, D. Croci, T. Granata, M. Estienne, F. Pisani, and G. Avanzini, “Lamotrigine plasma concentrations in children and adults: influence of age and associated therapy,” Therapeutic Drug Monitoring, vol. 19, no. 6, pp. 620–627, 1997. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Arif, R. Buchsbaum, and R. Buchsbaum, “Comparison and predictors of rash associated with 15 antiepileptic drugs,” Neurology, vol. 68, no. 20, pp. 1701–1709, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. N. Levi, S. Bastuji-Garin, and S. Bastuji-Garin, “Medications as risk factors of stevens-johnson syndrome and toxic epidermal necrolysis in children: a pooled analysis,” Pediatrics, vol. 123, no. 2, pp. e297–e304, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. R. V. A. Sheorajpanday and P. P. De Deyn, “Epileptic fits and epilepsy in the elderly: general reflections, specific issues and therapeutic implications,” Clinical Neurology and Neurosurgery, vol. 109, no. 9, pp. 727–743, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. E. Longin, M. Teich, W. Koelfen, and S. König, “Topiramate enhances the risk of valproate-associated side effects in three children,” Epilepsia, vol. 43, no. 4, pp. 451–454, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. T. Gerstner, D. Buesing, and D. Buesing, “Valproic acid induced encephalopathy—19 new cases in Germany from 1994 to 2003—a side effect associated to VPA-therapy not only in young children,” Seizure, vol. 15, no. 6, pp. 443–448, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  121. J. Nicolai, A. P. Aldenkamp, J. R. Huizenga, L. K. Teune, and O. F. Brouwer, “Cognitive side effects of valproic acid-induced hyperammonemia in children with epilepsy,” Journal of Clinical Psychopharmacology, vol. 27, no. 2, pp. 221–224, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  122. I. Bhattacharya and K. M. Boje, “GHB (γ-hydroxybutyrate) carrier-mediated transport across the blood-brain barrier,” Journal of Pharmacology and Experimental Therapeutics, vol. 311, no. 1, pp. 92–98, 2004. View at Google Scholar
  123. T. Gerstner, M. Teich, N. Bell, E. Longin, C.-E. Dempfle, J. Brand, and S. König, “Valproate-associated coagulopathies are frequent and variable in children,” Epilepsia, vol. 47, no. 7, pp. 1136–1143, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. J. A. Woyach, R. T. Kloos, and R. T. Kloos, “Lack of therapeutic effect of the histone deacetylase inhibitor vorinostat in patients with metastatic radioiodine-refractory thyroid carcinoma,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 1, pp. 164–170, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. J. R. Hardy, E. A. J. Rees, B. Gwilliam, J. Ling, K. Broadley, and R. A'Hern, “A Phase II study to establish the efficacy and toxicity of sodium valproate in patients with cancer-related neuropathic pain,” Journal of Pain and Symptom Management, vol. 21, no. 3, pp. 204–209, 2001. View at Publisher · View at Google Scholar · View at Scopus
  126. B. Schmitt, F. Martin, H. Critelli, L. Molinari, and O. G. Jenni, “Effects of valproic acid on sleep in children with epilepsy,” Epilepsia, vol. 50, no. 8, pp. 1860–1867, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  127. E. C. Wirrell, “Valproic acid-associated weight gain in older children and teens with epilepsy,” Pediatric Neurology, vol. 28, no. 2, pp. 126–129, 2003. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Grosso, R. Mostardini, B. Piccini, and P. Balestri, “Body mass index and serum lipid changes during treatment with valproic acid in children with epilepsy,” Annals of Pharmacotherapy, vol. 43, no. 1, pp. 45–50, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  129. N. Ubeda-Martin, E. Alonso-Aperte, M. Achon, G. Varela-Moreiras, J. Puerta, and J. Perez de Miguelsanz, “Morphological alterations induced by valproate and its concomitant administration of folic acid or S-adenosylmethionine in pregnant rats,” Nutricion Hospitalaria, vol. 13, no. 1, pp. 41–49, 1998. View at Google Scholar
  130. J. Clayton-Smith and D. Donnai, “Fetal valproate syndrome,” Journal of Medical Genetics, vol. 32, no. 9, pp. 724–727, 1995. View at Google Scholar
  131. P. Genton, F. Semah, and E. Trinka, “Valproic acid in epilepsy: pregnancy-related issues,” Drug Safety, vol. 29, no. 1, pp. 1–21, 2006. View at Publisher · View at Google Scholar
  132. A. Ornoy, “Valproic acid in pregnancy: how much are we endangering the embryo and fetus?” Reproductive Toxicology, vol. 28, no. 1, pp. 1–10, 2009. View at Publisher · View at Google Scholar · View at PubMed
  133. K. J. Meador, G. A. Baker, and G. A. Baker, “Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs,” New England Journal of Medicine, vol. 360, no. 16, pp. 1597–1605, 2009. View at Publisher · View at Google Scholar · View at PubMed
  134. K. J. Meador, P. Penovich, and P. Penovich, “Antiepileptic drug use in women of childbearing age,” Epilepsy and Behavior, vol. 15, no. 3, pp. 339–343, 2009. View at Publisher · View at Google Scholar · View at PubMed
  135. A. O. Varoglu, “Na VPA-induced acute ischemic stroke in an epileptic patient with methylenetetrahydrofolate reductase gene polymorphism,” Epilepsy Research, vol. 86, no. 2-3, pp. 232–236, 2009. View at Publisher · View at Google Scholar · View at PubMed
  136. R. D. Buechler and J. R. Buchhalter, “Juvenile Absence Epilepsy Exacerbated by Valproic Acid,” Pediatric Neurology, vol. 36, no. 2, pp. 121–124, 2007. View at Publisher · View at Google Scholar · View at PubMed
  137. D. Jamora, S.-H. Lim, A. Pan, L. Tan, and E.-K. Tan, “Valproate-induced Parkinsonism in epilepsy patients,” Movement Disorders, vol. 22, no. 1, pp. 130–133, 2007. View at Publisher · View at Google Scholar · View at PubMed
  138. F. E. Dreifuss, N. Santilli, and D. H. Langer, “Valproic acid hepatic fatalities: a retrospective review,” Neurology, vol. 37, no. 3, pp. 379–385, 1987. View at Google Scholar
  139. F. E. Dreifuss, D. H. Langer, K. A. Moline, and J. E. Maxwell, “Valproic acid hepatic fatalities. II. US experience since 1984,” Neurology, vol. 39, no. 2 I, pp. 201–207, 1989. View at Google Scholar
  140. K. B. Handoko, P. C. Souverein, T. P. van Staa, R. H. B. Meyboom, H. G. M. Leufkens, T. C. G. Egberts, and P. M. L. A. Van Den Bemt, “Risk of aplastic anemia in patients using antiepileptic drugs,” Epilepsia, vol. 47, no. 7, pp. 1232–1236, 2006. View at Publisher · View at Google Scholar · View at PubMed
  141. S. Brenner, R. Wolf, M. Landau, and Y. Politi, “Psoriasiform eruption induced by anticonvulsants,” Israel Journal of Medical Sciences, vol. 30, no. 4, pp. 283–286, 1994. View at Google Scholar
  142. M. Baba, M. Karakaş, V. L. Aksungur, S. Homan, A. Yücel, M. A. Acar, and H. R. Memişoǧlu, “The anticonvulsant hypersensitivity syndrome,” Journal of the European Academy of Dermatology and Venereology, vol. 17, no. 4, pp. 399–401, 2003. View at Publisher · View at Google Scholar
  143. C. L. Harden and N. K. Sethi, “Epileptic disorders in pregnancy: an overview,” Current Opinion in Obstetrics and Gynecology, vol. 20, no. 6, pp. 557–562, 2008. View at Publisher · View at Google Scholar · View at PubMed
  144. E. Alonso-Aperte, N. Ubeda, M. Achón, J. Pérez-Miguelsanz, and G. Varela-Moreiras, “Impaired methionine synthesis and hypomethylation in rats exposed to valproate during gestation,” Neurology, vol. 52, no. 4, pp. 750–756, 1999. View at Google Scholar
  145. P. Kwan and M. J. Brodie, “Neuropsychological effects of epilepsy and antiepileptic drugs,” Lancet, vol. 357, no. 9251, pp. 216–222, 2001. View at Publisher · View at Google Scholar · View at PubMed
  146. K. Easterford, P. Clough, M. Kellett, K. Fallonand, and S. Duncan, “Reversible parkinsonism with normal beta-CIT-SPECT in patients exposed to sodium valproate,” Neurology, vol. 62, no. 8, pp. 1435–1437, 2004. View at Google Scholar
  147. A. J. Ristić, N. Vojvodić, S. Janković, A. Sindelić, and D. Sokić, “The frequency of reversible parkinsonism and cognitive decline associated with valproate treatment: a study of 364 patients with different types of epilepsy,” Epilepsia, vol. 47, no. 12, pp. 2183–2185, 2006. View at Publisher · View at Google Scholar · View at PubMed
  148. G. P. Sechi, M. Conti, G. F. Sau, and G. A. Cocco, “Valproate-induced parkinsonism, glial cells and Alexander's disease,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 32, no. 5, pp. 1351–1352, 2008. View at Publisher · View at Google Scholar · View at PubMed
  149. A. E. Bryant III and F. E. Dreifuss, “Valproic acid hepatic fatalities. III. U.S. experience since 1986,” Neurology, vol. 46, no. 2, pp. 465–469, 1996. View at Google Scholar
  150. K. Kassahun, K. Farrell, and F. Abbott, “Identification and characterization of the glutathione and N-acetylcysteine conjugates of (E)-2-propyl-2,4-pentadienoic acid, a toxic metabolite of valproic acid, in rats and humans,” Drug Metabolism and Disposition, vol. 19, no. 2, pp. 525–535, 1991. View at Google Scholar
  151. S. Gopaul, K. Farrell, and F. Abbott, “Effects of age and polytherapy, risk factors of valproic acid (VPA) hepatotoxicity, on the excretion of thiol conjugates of (E)-2,4-diene VPA in people with epilepsy taking VPA,” Epilepsia, vol. 44, no. 3, pp. 322–328, 2003. View at Publisher · View at Google Scholar
  152. M. Kieslich, D. Schwabe, J. Cinatl Jr., and P. Hernáiz Driever, “Increase of fetal hemoglobin synthesis indicating differentiation induction in children receiving valproic acid,” Pediatric Hematology and Oncology, vol. 20, no. 1, pp. 15–22, 2003. View at Google Scholar · View at Scopus