Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 518743, 14 pages
http://dx.doi.org/10.1155/2010/518743
Research Article

Elementary Mode Analysis for the Rational Design of Efficient Succinate Conversion from Glycerol by Escherichia coli

1Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
2Department of Chemical Engineering, Institute of Applied Chemistry, Tsinghua University, Beijing 100084, China

Received 2 December 2009; Revised 20 May 2010; Accepted 7 July 2010

Academic Editor: Jennifer Reed

Copyright © 2010 Zhen Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Yazdani and R. Gonzalez, “Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry,” Current Opinion in Biotechnology, vol. 18, no. 3, pp. 213–219, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. Y. Xu, H. Liu, W. Du, Y. Sun, X. Ou, and D. Liu, “Integrated production for biodiesel and 1,3-propanediol with lipase-catalyzed transesterification and fermentation,” Biotechnology Letters, vol. 31, no. 9, pp. 1335–1341, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. Z. Chen, H. Liu, and D. Liu, “Regulation of 3-hydroxypropionaldehyde accumulation in Klebsiella pneumoniae by overexpression of dhaT and dhaD genes,” Enzyme and Microbial Technology, vol. 45, no. 4, pp. 305–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Chen, H.-J. Liu, J.-A. Zhang, and D.-H. Liu, “Cell physiology and metabolic flux response of Klebsiella pneumoniae to aerobic conditions,” Process Biochemistry, vol. 44, no. 8, pp. 862–868, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Shams Yazdani and R. Gonzalez, “Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products,” Metabolic Engineering, vol. 10, no. 6, pp. 340–351, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. D. Rittmann, S. N. Lindner, and V. F. Wendisch, “Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum,” Applied and Environmental Microbiology, vol. 74, no. 20, pp. 6216–6222, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. I. R. Booth, “Glycerol and methylglyoxal metabolism,” in EcoSal—Escherichia coli and Salmonella: Cellular and Molecular Biology, R. Curtis III et al., Ed., ASM Press, Washington, DC, USA, 2005. View at Google Scholar
  8. Y. D. Kwon, S. Y. Lee, and P. Kim, “Influence of gluconeogenic phosphoenolpyruvate carboxykinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition,” Journal of Microbiology and Biotechnology, vol. 16, no. 9, pp. 1448–1452, 2006. View at Google Scholar · View at Scopus
  9. H. Lin, K.-Y. San, and G. N. Bennett, “Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli,” Applied Microbiology and Biotechnology, vol. 67, no. 4, pp. 515–523, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. S. H. Hong and S. Y. Lee, “Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity,” Biotechnology and Bioengineering, vol. 74, no. 2, pp. 89–95, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. W. B. Freedberg and E. C. C. Lin, “Three kinds of controls affecting the expression of the glp regulon in Escherichia coli,” Journal of Bacteriology, vol. 115, no. 3, pp. 816–823, 1973. View at Google Scholar · View at Scopus
  12. G. Sweet, C. Gandor, R. Voegele et al., “Glycerol facilitator of Escherichia coli: cloning of glpF and identification of the glpF product,” Journal of Bacteriology, vol. 172, no. 1, pp. 424–430, 1990. View at Google Scholar · View at Scopus
  13. Y. Dharmadi, A. Murarka, and R. Gonzalez, “Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering,” Biotechnology and Bioengineering, vol. 94, no. 5, pp. 821–829, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. A. Murarka, Y. Dharmadi, S. S. Yazdani, and R. Gonzalez, “Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals,” Applied and Environmental Microbiology, vol. 74, no. 4, pp. 1124–1135, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. N. E. Altaras and D. C. Cameron, “Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli,” Applied and Environmental Microbiology, vol. 65, no. 3, pp. 1180–1185, 1999. View at Google Scholar · View at Scopus
  16. J. A. Papin, J. Stelling, N. D. Price, S. Klamt, S. Schuster, and B. O. Palsson, “Comparison of network-based pathway analysis methods,” Trends in Biotechnology, vol. 22, no. 8, pp. 400–405, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. C. H. Schilling, D. Letscher, and B. O. Palsson, “Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective,” Journal of Theoretical Biology, vol. 203, no. 3, pp. 229–248, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. S. Schuster, T. Dandekar, and D. A. Fell, “Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering,” Trends in Biotechnology, vol. 17, no. 2, pp. 53–60, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. J. O. Krömer, C. Wittmann, H. Schröder, and E. Heinzle, “Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum,” Metabolic Engineering, vol. 8, no. 4, pp. 353–369, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. R. Carlson, D. Fell, and F. Srienc, “Metabolic pathway analysis of a recombinant yeast for rational strain development,” Biotechnology and Bioengineering, vol. 79, no. 2, pp. 121–134, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. N. C. Duarte, B. Ø. Palsson, and P. Fu, “Integrated analysis of metabolic phenotypes in Saccharomyces cerevisiae,” BMC Genomics, vol. 5, article 63, 2004. View at Publisher · View at Google Scholar · View at PubMed
  22. J. C. Liao and M.-K. Oh, “Toward predicting metabolic fluxes in metabolically engineered strains,” Metabolic Engineering, vol. 1, no. 3, pp. 214–223, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. R. Carlson and F. Srienc, “Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states,” Biotechnology and Bioengineering, vol. 86, no. 2, pp. 149–162, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. N. Vijayasankaran, R. Carlson, and F. Srienc, “Metabolic pathway structures for recombinant protein synthesis in Escherichia coli,” Applied Microbiology and Biotechnology, vol. 68, no. 6, pp. 737–746, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. Q. Zhang and Z. Xiu, “Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumoniae incorporating oxygen regulatory system,” Biotechnology Progress, vol. 25, no. 1, pp. 103–115, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. U. Sauer, F. Canonaco, S. Heri, A. Perrenoud, and E. Fischer, “The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli,” Journal of Biological Chemistry, vol. 279, no. 8, pp. 6613–6619, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. R. Carlson and F. Srienc, “Fundamental Escherichia coli biochemical pathways for biomass and energy production: identification of reactions,” Biotechnology and Bioengineering, vol. 85, no. 1, pp. 1–19, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. J. S. Edwards and B. O. Palsson, “Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions,” BMC Bioinformatics, vol. 1, article 1, 2000. View at Publisher · View at Google Scholar
  29. A. Hasona, Y. Kim, F. G. Healy, L. O. Ingram, and K. T. Shanmugam, “Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose,” Journal of Bacteriology, vol. 186, no. 22, pp. 7593–7600, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, WH Freeman, 5th edition, 2002.
  31. A. von Kamp and S. Schuster, “Metatool 5.0: fast and flexible elementary modes analysis,” Bioinformatics, vol. 22, no. 15, pp. 1930–1931, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. T. Pfeiffer, I. Sánchez-Valdenebro, J. C. Nuño, F. Montero, and S. Schuster, “METATOOL: for studying metabolic networks,” Bioinformatics, vol. 15, no. 3, pp. 251–257, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. C. T. Trinh and F. Srienc, “Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol,” Applied and Environmental Microbiology, vol. 75, no. 21, pp. 6696–6705, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. H. Lin, G. N. Bennett, and K.-Y. San, “Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield,” Metabolic Engineering, vol. 7, no. 2, pp. 116–127, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus