Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 520258, 6 pages
http://dx.doi.org/10.1155/2010/520258
Review Article

The Role of Exercise-Induced Myokines in Muscle Homeostasis and the Defense against Chronic Diseases

The Centre of Inflammation and Metabolism, The Department of Infectious Diseases, Copenhagen Muscle Research Centre, Rigshospitalet, The Faculty of Health Sciences, University of Copenhagen, 2100 Copenhagen, Denmark

Received 17 November 2009; Accepted 26 January 2010

Academic Editor: Henk L. M. Granzier

Copyright © 2010 Claus Brandt and Bente K. Pedersen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Nocon, T. Hiemann, F. Muller-Riemenschneider, F. Thalau, S. Roll, and S. N. Willich, “Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 15, no. 3, pp. 239–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Tuomilehto, J. Lindstrom, J. G. Eriksson et al., “Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance,” New England Journal of Medicine, vol. 344, no. 18, pp. 1343–1350, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. W. C. Knowler, E. Barrett-Connor, S. E. Fowler et al., “Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin,” New England Journal of Medicine, vol. 346, no. 6, pp. 393–403, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Lindstrom, P. Ilanne-Parikka, M. Peltonen et al., “Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study,” The Lancet, vol. 368, no. 9548, pp. 1673–1679, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Bruunsgaard, Ageing and immune functioin, M.S. thesis/dissertation, University of Copenhagen, Copenhagen, Denmark, 2000.
  6. K. V. Allen, B. M. Frier, and M. W. J. Strachan, “The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations,” European Journal of Pharmacology, vol. 490, no. 1–3, pp. 169–175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. J. Biessels, S. Staekenborg, E. Brunner, C. Brayne, and P. Scheltens, “Risk of dementia in diabetes mellitus: a systematic review,” Lancet Neurology, vol. 5, no. 1, pp. 64–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Rovio, I. Kareholt, E.-L. Helkala et al., “Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease,” Lancet Neurology, vol. 4, no. 11, pp. 705–711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Andel, M. Crowe, N. L. Pedersen, L. Fratiglioni, B. Johansson, and M. Gatz, “Physical exercise at midlife and risk of dementia three decades later: a population-based study of Swedish twins,” Journals of Gerontology, vol. 63, no. 1, pp. 62–66, 2008. View at Google Scholar · View at Scopus
  10. N. T. Lautenschlager, K. L. Cox, L. Flicker et al., “Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial,” Journal of the American Medical Association, vol. 300, no. 9, pp. 1027–1037, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. B. K. Pedersen, “The diseasome of physical inactivity—and the role of myokines in muscle-fat cross talk,” Journal of Physiology, vol. 587, no. 23, pp. 5559–5568, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Bruunsgaard and B. K. Pedersen, “Age-related inflammatory cytokines and disease,” Immunology and Allergy Clinics of North America, vol. 23, no. 1, pp. 15–39, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Bruunsgaard, S. Ladelund, A. N. Pedersen, M. Schroll, T. Jorgensen, and B. K. Pedersen, “Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people,” Clinical and Experimental Immunology, vol. 132, no. 1, pp. 24–31, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Bruunsgaard, A. N. Pedersen, M. Schroll, P. Skinhoj, and B. K. Pedersen, “Impaired production of proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation in elderly humans,” Clinical and Experimental Immunology, vol. 118, no. 2, pp. 235–241, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Handschin and B. M. Spiegelman, “The role of exercise and PGC1α in inflammation and chronic disease,” Nature, vol. 454, no. 7203, pp. 463–469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. B. K. Pedersen and M. A. Febbraio, “Muscle as an endocrine organ: focus on muscle-derived interleukin-6,” Physiological Reviews, vol. 88, no. 4, pp. 1379–1406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Plomgaard, K. Bouzakri, R. Krogh-Madsen, B. Mittendorfer, J. R. Zierath, and B. K. Pedersen, “Tumor necrosis factor-α induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation,” Diabetes, vol. 54, no. 10, pp. 2939–2945, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Plomgaard, C. P. Fischer, T. Ibfelt, B. K. Pedersen, and G. Van Hall, “Tumor necrosis factor-α modulates human in vivo lipolysis,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 2, pp. 543–549, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. M. Petersen, P. Plomgaard, C. P. Fischer, T. Ibfelt, B. K. Pedersen, and G. Van Hall, “Acute moderate elevation of TNF-α does not affect systemic and skeletal muscle protein turnover in healthy humans,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 1, pp. 294–299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. S. Yudkin, E. Eringa, and C. D. A. Stehouwer, ““Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease,” The Lancet, vol. 365, no. 9473, pp. 1817–1820, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Plomgaard, P. Keller, C. Keller, and B. K. Pedersen, “TNF-α, but not IL-6, stimulates plasminogen activator inhibitor-1 expression in human subcutaneous adipose tissue,” Journal of Applied Physiology, vol. 98, no. 6, pp. 2019–2023, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. G. S. Hotamisligil, “Inflammatory pathways and insulin action,” International Journal of Obesity, vol. 27, supplement 3, pp. S53–S55, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Wallenius, K. Wallenius, B. Ahren et al., “Interleukin-6-deficient mice develop mature-onset obesity,” Nature Medicine, vol. 8, no. 1, pp. 75–79, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. E. W. Petersen, A. L. Carey, M. Sacchetti et al., “Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro,” American Journal of Physiology, vol. 288, no. 1, pp. E155–E162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Van Hall, A. Steensberg, M. Sacchetti et al., “Interleukin-6 stimulates lipolysis and fat oxidation in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 7, pp. 3005–3010, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Plomgaard, A. R. Nielsen, C. P. Fischer et al., “Associations between insulin resistance and TNF-a in plasma, skeletal muscle and adipose tissue in humans with and without type 2 diabetes,” Diabetologia, vol. 50, no. 12, pp. 2562–2571, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. W.-W. Lin and M. Karin, “A cytokine-mediated link between innate immunity, inflammation, and cancer,” Journal of Clinical Investigation, vol. 117, no. 5, pp. 1175–1183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. V. H. Perry, C. Cunningham, and C. Holmes, “Systemic infections and inflammation affect chronic neurodegeneration,” Nature Reviews Immunology, vol. 7, no. 2, pp. 161–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. B. K. Pedersen, “Edward F. Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines,” Journal of Applied Physiology, vol. 107, no. 4, pp. 1006–1014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. B. K. Pedersen, M. Pedersen, K. S. Krabbe, H. Bruunsgaard, V. B. Matthews, and M. A. Febbraio, “Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals: experimental physiology-hot topic review,” Experimental Physiology, vol. 94, no. 12, pp. 1153–1160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Broholm, O. H. Mortensen, S. Nielsen et al., “Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle,” Journal of Physiology, vol. 586, no. 8, pp. 2195–2201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Izumiya, H. A. Bina, N. Ouchi, Y. Akasaki, A. Kharitonenkov, and K. Walsh, “FGF21 is an Akt-regulated myokine,” FEBS Letters, vol. 582, no. 27, pp. 3805–3810, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Ouchi, Y. Oshima, K. Ohashi et al., “Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism,” Journal of Biological Chemistry, vol. 283, no. 47, pp. 32802–32811, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. R. Nielsen and B. K. Pedersen, “The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15,” Applied Physiology, Nutrition and Metabolism, vol. 32, no. 5, pp. 833–839, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. A. R. Nielsen, R. Mounier, P. Plomgaard et al., “Expression of interleukin-15 in human skeletal muscle—effect of exercise and muscle fibre type composition,” Journal of Physiology, vol. 584, no. 1, pp. 305–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. R. Nielsen, P. Hojman, C. Erikstrup et al., “Association between interleukin-15 and obesity: interleukin-15 as a potential regulator of fat mass,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. 4486–4493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. L. S. Quinn, B. G. Anderson, L. Strait-Bodey, A. M. Stroud, and J. M. Argiles, “Oversecretion of interleukin-15 from skeletal muscle reduces adiposity,” American Journal of Physiology, vol. 296, no. 1, pp. E191–E202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. P. Mattson, S. Maudsley, and B. Martin, “BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders,” Trends in Neurosciences, vol. 27, no. 10, pp. 589–594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. W. J. Tyler, M. Alonso, C. R. Bramham, and L. D. Pozzo-Miller, “From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning,” Learning and Memory, vol. 9, no. 5, pp. 224–237, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Connor, D. Young, Q. Yan, R. L. M. Faull, B. Synek, and M. Dragunow, “Brain-derived neurotrophic factor is reduced in Alzheimer's disease,” Molecular Brain Research, vol. 49, no. 1-2, pp. 71–81, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Laske, E. Stransky, T. Leyhe et al., “Stage-dependent BDNF serum concentrations in Alzheimer's disease,” Journal of Neural Transmission, vol. 113, no. 9, pp. 1217–1224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Karege, G. Perret, G. Bondolfi, M. Schwald, G. Bertschy, and J.-M. Aubry, “Decreased serum brain-derived neurotrophic factor levels in major depressed patients,” Psychiatry Research, vol. 109, no. 2, pp. 143–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Komulainen, M. Pedersen, T. Hanninen et al., “BDNF is a novel marker of cognitive function in ageing women: the DR's EXTRA Study,” Neurobiology of Learning and Memory, vol. 90, no. 4, pp. 596–603, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. K. S. Krabbe, E. L. Mortensen, K. Avlund et al., “Brain-derived neurotrophic factor predicts mortality risk in older women,” Journal of the American Geriatrics Society, vol. 57, no. 8, pp. 1447–1452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. K. S. Krabbe, A. R. Nielsen, R. Krogh-Madsen et al., “Brain-derived neurotrophic factor (BDNF) and type 2 diabetes.,” Diabetologia, vol. 50, no. 2, pp. 431–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. V. B. Matthews, M.-B. Åström, M. H. S. Chan et al., “Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase,” Diabetologia, vol. 52, no. 7, pp. 1409–1418, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Mathur and B. K. Pedersen, “Exercise as a mean to control low-grade systemic inflammation,” Mediators of Inflammation, vol. 2008, Article ID 109502, 6 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. A. M. W. Petersen and B. K. Pedersen, “The anti-inflammatory effect of exercise,” Journal of Applied Physiology, vol. 98, no. 4, pp. 1154–1162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. D. C. Nieman, “Current perspective on exercise immunology,” Current Sports Medicine Reports, vol. 2, no. 5, pp. 239–242, 2003. View at Google Scholar · View at Scopus
  50. K. Ostrowski, P. Schjerling, and B. K. Pedersen, “Physical activity and plasma interleukin-6 in humans—effect of intensity of exercise,” European Journal of Applied Physiology, vol. 83, no. 6, pp. 512–515, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Ostrowski, T. Rohde, S. Asp, P. Schjerling, and B. K. Pedersen, “Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans,” Journal of Physiology, vol. 515, part 1, pp. 287–291, 1999. View at Google Scholar · View at Scopus
  52. R. Starkie, S. R. Ostrowski, S. Jauffred, M. Febbraio, and B. K. Pedersen, “Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans,” The FASEB Journal, vol. 17, no. 8, pp. 884–886, 2003. View at Google Scholar
  53. A. Steensberg, C. P. Fischer, C. Keller, K. Moller, and B. K. Pedersen, “IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans,” American Journal of Physiology, vol. 285, no. 2, pp. E433–E437, 2003. View at Google Scholar · View at Scopus