Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 541698, 9 pages
http://dx.doi.org/10.1155/2010/541698
Review Article

Synthetic Biology Guides Biofuel Production

Department of Chemistry, University of California, Davis, CA 95616, USA

Received 16 May 2010; Accepted 5 July 2010

Academic Editor: Patrick Cirino

Copyright © 2010 Michael R. Connor and Shota Atsumi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Stephanopoulos, “Challenges in engineering microbes for biofuels production,” Science, vol. 315, no. 5813, pp. 801–804, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. K. E. Serferlein, Annual Energy Review 2008, E.I. Administration, 2009.
  3. S. K. Lee, H. Chou, T. S. Ham, T. S. Lee, and J. D. Keasling, “Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels,” Current Opinion in Biotechnology, vol. 19, no. 6, pp. 556–563, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. P. P. Peralta-Yahya and J. D. Keasling, “Advanced biofuel production in microbes,” Biotechnology Journal, vol. 5, no. 2, pp. 147–162, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S. Atsumi and J. C. Liao, “Metabolic engineering for advanced biofuels production from Escherichia coli,” Current Opinion in Biotechnology, vol. 19, no. 5, pp. 414–419, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. EPA Finalizes Regulations for the National Renewable Fuel Standard Program for 2010 and Beyond, O.o.T.a.A. Quality, 2010.
  7. S. Atsumi, A. F. Cann, and A. F. Cann, “Metabolic engineering of Escherichia coli for 1-butanol production,” Metabolic Engineering, vol. 10, no. 6, pp. 305–311, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. T. Hanai, S. Atsumi, and J. C. Liao, “Engineered synthetic pathway for isopropanol production in Escherichia coli,” Applied and Environmental Microbiology, vol. 73, no. 24, pp. 7814–7818, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. Inui, M. Suda, and M. Suda, “Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli,” Applied Microbiology and Biotechnology, vol. 77, no. 6, pp. 1305–1316, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. D. R. Nielsen, E. Leonard, S.-H. Yoon, H.-C. Tseng, C. Yuan, and K. L. J. Prather, “Engineering alternative butanol production platforms in heterologous bacteria,” Metabolic Engineering, vol. 11, no. 4-5, pp. 262–273, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. E. J. Steen, R. Chan, and R. Chan, “Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol,” Microbial Cell Factories, vol. 7, article 36, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. T. Jojima, M. Inui, and H. Yukawa, “Production of isopropanol by metabolically engineered Escherichia coli,” Applied Microbiology and Biotechnology, vol. 77, no. 6, pp. 1219–1224, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. S. Atsumi, T. Hanai, and J. C. Liao, “Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels,” Nature, vol. 451, no. 7174, pp. 86–89, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. S. T. Withers, S. S. Gottlieb, B. Lieu, J. D. Newman, and J. D. Keasling, “Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity,” Applied and Environmental Microbiology, vol. 73, no. 19, pp. 6277–6283, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. E. J. Steen, Y. Kang, and Y. Kang, “Microbial production of fatty-acid-derived fuels and chemicals from plant biomass,” Nature, vol. 463, no. 7280, pp. 559–562, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. X. Lu, H. Vora, and C. Khosla, “Overproduction of free fatty acids in E. coli: implications for biodiesel production,” Metabolic Engineering, vol. 10, no. 6, pp. 333–339, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. T. Liu, H. Vora, and C. Khosla, “Quantitative analysis and engineering of fatty acid biosynthesis in E. coli,” Metabolic Engineering, vol. 12, no. 4, pp. 378–386, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. R. Kalscheuer, T. Stölting, and A. Steinbüchel, “Microdiesel: Escherichia coli engineered for fuel production,” Microbiology, vol. 152, part 9, pp. 2529–2536, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. S. Atsumi, W. Higashide, and J. C. Liao, “Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde,” Nature Biotechnology, vol. 27, no. 12, pp. 1177–1180, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. P. Lindberg, S. Park, and A. Melis, “Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism,” Metabolic Engineering, vol. 12, no. 1, pp. 70–79, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. H. Alper, C. Fischer, E. Nevoigt, and G. Stephanopoulos, “Tuning genetic control through promoter engineering,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 36, pp. 12678–12683, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. U. Baron, M. Gossen, and H. Bujard, “Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential,” Nucleic Acids Research, vol. 25, no. 14, pp. 2723–2729, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Lutz and H. Bujard, “Independent and tight regulation of transcriptional units in escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements,” Nucleic Acids Research, vol. 25, no. 6, pp. 1203–1210, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. T. S. Bayer and C. D. Smolke, “Programmable ligand-controlled riboregulators of eukaryotic gene expression,” Nature Biotechnology, vol. 23, no. 3, pp. 337–343, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. J. E. Dueber, B. J. Yeh, K. Chak, and W. A. Lim, “Reprogramming control of an allosteric signaling switch through modular recombination,” Science, vol. 301, no. 5641, pp. 1904–1908, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. F. J. Isaacs, D. J. Dwyer, C. Ding, D. D. Pervouchine, C. R. Cantor, and J. J. Collins, “Engineered riboregulators enable post-transcriptional control of gene expression,” Nature Biotechnology, vol. 22, no. 7, pp. 841–847, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. B. F. Pfleger, D. J. Pitera, C. D. Smolke, and J. D. Keasling, “Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes,” Nature Biotechnology, vol. 24, no. 8, pp. 1027–1032, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. N. Win and C. D. Smolke, “A modular and extensible RNA-based gene-regulatory platform for engineering cellular function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 36, pp. 14283–14288, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. E. Dueber, G. C. Wu, and G. C. Wu, “Synthetic protein scaffolds provide modular control over metabolic flux,” Nature Biotechnology, vol. 27, no. 8, pp. 753–759, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. S.-H. Park, A. Zarrinpar, and W. A. Lim, “Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms,” Science, vol. 299, no. 5609, pp. 1061–1064, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. E. Andrianantoandro, S. Basu, D. K. Karig, and R. Weiss, “Synthetic biology: new engineering rules for an emerging discipline,” Molecular Systems Biology, vol. 2, Article ID 2006.0028, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. B. Elowitz and S. Leibier, “A synthetic oscillatory network of transcriptional regulators,” Nature, vol. 403, no. 6767, pp. 335–338, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle switch in Escherichia coli,” Nature, vol. 403, no. 6767, pp. 339–342, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. J. D. Keasling, “Synthetic biology for synthetic chemistry,” ACS Chemical Biology, vol. 3, no. 1, pp. 64–76, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. I. Lee, L. A. Johnson, and E. G. Hammond, “Use of branched-chain esters to reduce the crystallization temperature of biodiesel,” Journal of the American Oil Chemists' Society, vol. 72, no. 10, pp. 1155–1160, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. D. T. Jones and D. R. Woods, “Acetone-butanol fermentation revisited,” Microbiological Reviews, vol. 50, no. 4, pp. 484–524, 1986. View at Google Scholar · View at Scopus
  37. C.-K. Chen and H. P. Blaschek, “Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101,” Applied Microbiology and Biotechnology, vol. 52, no. 2, pp. 170–173, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. J.-S. Chen and S. F. Hiu, “Acetone-butanol-isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum),” Biotechnology Letters, vol. 8, no. 5, pp. 371–376, 1986. View at Publisher · View at Google Scholar · View at Scopus
  39. M. R. Connor and J. C. Liao, “Microbial production of advanced transportation fuels in non-natural hosts,” Current Opinion in Biotechnology, vol. 20, no. 3, pp. 307–315, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. C. R. Shen and J. C. Liao, “Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways,” Metabolic Engineering, vol. 10, no. 6, pp. 312–320, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. A. F. Cann and J. C. Liao, “Production of 2-methyl-1-butanol in engineered Escherichia coli,” Applied Microbiology and Biotechnology, vol. 81, no. 1, pp. 89–98, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. R. Connor and J. C. Liao, “Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol,” Applied and Environmental Microbiology, vol. 74, no. 18, pp. 5769–5775, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. S. Atsumi and J. C. Liao, “Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli,” Applied and Environmental Microbiology, vol. 74, no. 24, pp. 7802–7808, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. K. Zhang, M. R. Sawaya, D. S. Eisenberg, and J. C. Liao, “Expanding metabolism for biosynthesis of nonnatural alcohols,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 52, pp. 20653–20658, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. W. Leuchtenberger, K. Huthmacher, and K. Drauz, “Biotechnological production of amino acids and derivatives: current status and prospects,” Applied Microbiology and Biotechnology, vol. 69, no. 1, pp. 1–8, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. K. M. Smith, K.-M. Cho, and J. C. Liao, “Engineering Corynebacterium glutamicum for isobutanol production,” Applied Microbiology and Biotechnology, vol. 87, no. 3, pp. 1045–1055, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. M. R. Connor, A. F. Cann, and J. C. Liao, “3-methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation,” Applied Microbiology and Biotechnology, vol. 86, no. 4, pp. 1155–1164, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. D.-K. Ro, E. M. Paradise, and E. M. Paradise, “Production of the antimalarial drug precursor artemisinic acid in engineered yeast,” Nature, vol. 440, no. 7086, pp. 940–943, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. W. R. Farmer and J. C. Liao, “Improving lycopene production in Escherichia coli by engineering metabolic control,” Nature Biotechnology, vol. 18, no. 5, pp. 533–537, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. V. J. J. Martin, D. J. Piteral, S. T. Withers, J. D. Newman, and J. D. Keasling, “Engineering a mevalonate pathway in Escherichia coli for production of terpenoids,” Nature Biotechnology, vol. 21, no. 7, pp. 796–802, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. M. A. Rude and A. Schirmer, “New microbial fuels: a biotech perspective,” Current Opinion in Microbiology, vol. 12, no. 3, pp. 274–281, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. Q. Li, W. Du, and D. Liu, “Perspectives of microbial oils for biodiesel production,” Applied Microbiology and Biotechnology, vol. 80, no. 5, pp. 749–756, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. L. R. Lynd, W. H. Van Zyl, J. E. McBride, and M. Laser, “Consolidated bioprocessing of cellulosic biomass: an update,” Current Opinion in Biotechnology, vol. 16, no. 5, pp. 577–583, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. W. H. Van Zyl, L. R. Lynd, R. Den Haan, and J. E. McBride, “Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae,” Advances in Biochemical Engineering/Biotechnology, vol. 108, pp. 205–235, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. Y. Chisti, “Biodiesel from microalgae beats bioethanol,” Trends in Biotechnology, vol. 26, no. 3, pp. 126–131, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. A. J. Ragauskas, C. K. Williams, and C. K. Williams, “The path forward for biofuels and biomaterials,” Science, vol. 311, no. 5760, pp. 484–489, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. T. M. Wahlund, T. Conway, and F. R. Tabita, “Bioconversion of CO2 to ethanol and other compounds,” American Chemical Society Division of Fuel Chemistry, vol. 41, pp. 1403–1405, 1996. View at Google Scholar · View at Scopus
  58. M.-D. Deng and J. R. Coleman, “Ethanol synthesis by genetic engineering in cyanobacteria,” Applied and Environmental Microbiology, vol. 65, no. 2, pp. 523–528, 1999. View at Google Scholar · View at Scopus
  59. T. D. Sharkey and S. Yeh, “Isoprene emission from plants,” Annual Review of Plant Biology, vol. 52, pp. 407–436, 2001. View at Google Scholar · View at Scopus
  60. L. J. Anderson, P. C. Harley, R. K. Monson, and R. B. Jackson, “Reduction of isoprene emissions from live oak (Quercus fusiformis) with oak wilt,” Tree Physiology, vol. 20, no. 17, pp. 1199–1203, 2000. View at Google Scholar · View at Scopus
  61. Y. Chisti, “Biodiesel from microalgae,” Biotechnology Advances, vol. 25, no. 3, pp. 294–306, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. P. M. Schenk et al., “Second generation biofuels: high efficiency microalgae for biodiesel production,” Bioenergy Research, vol. 1, pp. 20–43, 2008. View at Google Scholar
  63. K. E. J. Tyo, P. K. Ajikumar, and G. Stephanopoulos, “Stabilized gene duplication enables long-term selection-free heterologous pathway expression,” Nature Biotechnology, vol. 27, no. 8, pp. 760–765, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. H. M. Salis, E. A. Mirsky, and C. A. Voigt, “Automated design of synthetic ribosome binding sites to control protein expression,” Nature Biotechnology, vol. 27, no. 10, pp. 946–950, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. D. J. Pitera, C. J. Paddon, J. D. Newman, and J. D. Keasling, “Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli,” Metabolic Engineering, vol. 9, no. 2, pp. 193–207, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. I. Martínez, J. Zhu, H. Lin, G. N. Bennett, and K.-Y. San, “Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways,” Metabolic Engineering, vol. 10, no. 6, pp. 352–359, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. A. M. Sánchez, J. Andrews, I. Hussein, G. N. Bennett, and K.-Y. San, “Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli,” Biotechnology Progress, vol. 22, no. 2, pp. 420–425, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. N. J. Guido, X. Wang, and X. Wang, “A bottom-up approach to gene regulation,” Nature, vol. 439, no. 7078, pp. 856–860, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. D. G. Gibson, J. I. Glass, and J. I. Glass, “Creation of a bacterial cell controlled by a chemically synthesized genome,” Science, vol. 329, no. 5987, pp. 52–56, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. B. Canton, A. Labno, and D. Endy, “Refinement and standardization of synthetic biological parts and devices,” Nature Biotechnology, vol. 26, no. 7, pp. 787–793, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus