Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 787545, 11 pages
http://dx.doi.org/10.1155/2010/787545
Research Article

Gene Expression Profiling of Placentas Affected by Pre-Eclampsia

1Department of Clinical Biochemistry, Hvidovre Hospital, University of Copenhagen, Kettegaard Allé 30, 2650 Hvidovre, Denmark
2Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark

Received 28 July 2009; Revised 29 October 2009; Accepted 24 November 2009

Academic Editor: Wenjiang J. Fu

Copyright © 2010 Anne Mette Hoegh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Geographic variation in the incidence of hypertension in pregnancy. World Health Organization International Collaborative Study of Hypertensive Disorders of Pregnancy,” American Journal of Obstetrics & Gynecology, vol. 158, pp. 80–83, 1988.
  2. E. van Beek and L. L. H. Peeters, “Pathogenesis of preeclampsia: a comprehensive model,” Obstetrical and Gynecological Survey, vol. 53, no. 4, pp. 233–239, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Duley, “The global impact of pre-eclampsia and eclampsia,” Seminars in Perinatology, vol. 33, no. 3, pp. 130–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Lyall, “The human placental bed revisited,” Placenta, vol. 23, no. 8-9, pp. 555–562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Lyall, “Development of the utero-placental circulation: the role of carbon monoxide and nitric oxide in trophoblast invasion and spiral artery transformation,” Microscopy Research and Technique, vol. 60, no. 4, pp. 402–411, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. VanWijk, K. Kublickiene, K. Boer, and E. VanBavel, “Vascular function in preeclampsia,” Cardiovascular Research, vol. 47, no. 1, pp. 38–48, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Kajii and K. Ohama, “Androgenetic origin of hydatidiform mole,” Nature, vol. 268, no. 5621, pp. 633–634, 1977. View at Google Scholar · View at Scopus
  8. A. M. Lachmeijer, G. A. Dekker, G. Pals, J. G. Aarnoudse, L. P. ten Kate, and R. Arngrímsson, “Searching for preeclampsia genes: the current position,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 105, no. 2, pp. 94–113, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. R. T. Lie, S. Rasmussen, H. Brunborg, H. K. Gjessing, E. Lie-Nielsen, and L. M. Irgens, “Fetal and maternal contributions to risk of pre-eclampsia: population based study,” British Medical Journal, vol. 316, no. 7141, pp. 1343–1347, 1998. View at Google Scholar · View at Scopus
  10. C. Li and W. H. Wong, “Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 1, pp. 31–36, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. D. Fondell, H. Ge, and R. G. Roeder, “Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 16, pp. 8329–8333, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Maruo, H. Matsuo, and M. Mochizuki, “Thyroid hormone as a biological amplifier of differentiated trophoblast function in early pregnancy,” Acta Endocrinologica, vol. 125, no. 1, pp. 58–66, 1991. View at Google Scholar · View at Scopus
  13. H. Matsuo, T. Maruo, K. Murata, and M. Mochizuki, “Human early placental trophoblasts produce an epidermal growth factor-like substance in synergy with thyroid hormone,” Acta Endocrinologica, vol. 128, no. 3, pp. 225–229, 1993. View at Google Scholar · View at Scopus
  14. R. Kumar and B. N. Chaudhuri, “Altered maternal thyroid function: fetal and neonatal development of rat,” Indian Journal of Physiology and Pharmacology, vol. 33, no. 4, pp. 233–238, 1989. View at Google Scholar · View at Scopus
  15. E. Shibata, K. Ejima, H. Nanri et al., “Enhanced protein levels of protein thiol/disulphide oxidoreductases in placentae from pre-eclamptic subjects,” Placenta, vol. 22, no. 6, pp. 566–572, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Ejima, T. Koji, H. Nanri, M. Kashimura, and M. Ikeda, “Expression of thioredoxin and thioredoxin reductase in placentae of pregnant mice exposed to lipopolysaccharide,” Placenta, vol. 20, no. 7, pp. 561–566, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Rosenquist, “14-3-3 proteins in apoptosis,” Brazilian Journal of Medical and Biological Research, vol. 36, no. 4, pp. 403–408, 2003. View at Google Scholar · View at Scopus
  18. M. Knight, C. W. G. Redman, E. A. Linton, and I. L. Sargent, “Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies,” British Journal of Obstetrics and Gynaecology, vol. 105, no. 6, pp. 632–640, 1998. View at Google Scholar · View at Scopus
  19. N. A. Bersinger, A. K. Smarason, S. Muttukrishna, N. P. Groome, and C. W. Redman, “Women with preeclampsia have increased serum levels of pregnancy-associated plasma protein A (PAPP-A), inhibin A, activin A, and soluble E-selectin,” Hypertension in Pregnancy, vol. 22, no. 1, pp. 45–55, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Florio, P. Ciarmela, S. Luisi et al., “Pre-eclampsia with fetal growth restriction: placental and serum activin A and inhibin A levels,” Gynecological Endocrinology, vol. 16, no. 5, pp. 365–372, 2002. View at Google Scholar · View at Scopus
  21. U. Manuelpillai, M. Schneider-Kolsky, P. Thirunavukarasu, A. Dole, K. Waldron, and E. M. Wallace, “Effect of hypoxia on placental activin A, inhibin A and follistatin synthesis,” Placenta, vol. 24, no. 1, pp. 77–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. H. M. Silver, G. M. Lambert-Messerlian, F. M. Reis, A. M. Diblasio, F. Petraglia, and J. A. Canick, “Mechanism of increased maternal serum total activin A and inhibin A in preeclampsia,” Journal of the Society for Gynecologic Investigation, vol. 9, no. 5, pp. 308–312, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. D. J. Phillips, K. L. Jones, J.-P. Y. Scheerlinck, M. P. Hedger, and D. M. de Kretser, “Evidence for activin A and follistatin involvement in the systemic inflammatory response,” Molecular and Cellular Endocrinology, vol. 180, no. 1-2, pp. 155–162, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Schoof, M. Girstl, W. Frobenius et al., “Decreased gene expression of 11ß-hydroxysteroid dehydrogenase type 2 and 15-hydroxyprostaglandin dehydrogenase in human placenta of patients with preeclampsia,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 3, pp. 1313–1317, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Jarabak, J. D. Watkins, and M. Lindheimer, “In vitro activity of nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-linked 15 hydroxyprostaglandin dehydrogenases in placentas from normotensive and preeclamptic/eclamptic pregnancies,” Journal of Clinical Investigation, vol. 80, no. 4, pp. 936–940, 1987. View at Google Scholar · View at Scopus
  26. R. K. Sangha, J. C. Walton, C. M. Ensor, H.-H. Tai, and J. R. G. Challis, “Immunohistochemical localization, messenger ribonucleic acid abundance, and activity of 15-hydroxyprostaglandin dehydrogenase in placenta and fetal membranes during term and preterm labor,” Journal of Clinical Endocrinology and Metabolism, vol. 78, no. 4, pp. 982–989, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. D. N. Melegos, H. Yu, and E. P. Diamandis, “Prostaglandin D2 synthase: a component of human amniotic fluid and its association with fetal abnormalities,” Clinical Chemistry, vol. 42, no. 7, pp. 1042–1050, 1996. View at Google Scholar · View at Scopus
  28. S. Saito, H. Tsuda, and T. Michimata, “Prostaglandin D2 and reproduction,” American Journal of Reproductive Immunology, vol. 47, no. 5, pp. 295–302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Tian, S. L. McKnight, and D. W. Russell, “Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells,” Genes and Development, vol. 11, no. 1, pp. 72–82, 1997. View at Google Scholar · View at Scopus
  30. H. Tian, R. E. Hammer, A. M. Matsumoto, D. W. Russell, and S. L. McKnight, “The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development,” Genes and Development, vol. 12, no. 21, pp. 3320–3324, 1998. View at Google Scholar · View at Scopus
  31. K. Brusselmans, V. Compernolle, M. Tjwa et al., “Heterozygous deficiency of hypoxia-inducible factor-2a protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia,” Journal of Clinical Investigation, vol. 111, no. 10, pp. 1519–1527, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Rajakumar, K. A. Whitelock, L. A. Weissfeld, A. R. Daftary, N. Markovic, and K. P. Conrad, “Selective overexpression of the hypoxia-inducible transcription factor, HIF-2α, in placentas from women with preeclampsia,” Biology of Reproduction, vol. 64, no. 2, pp. 499–506, 2001. View at Google Scholar · View at Scopus
  33. A. Rajakumar, K. Doty, A. Daftary, G. Harger, and K. P. Conrad, “Impaired oxygen-dependent reduction of HIF-1α and -2α proteins in pre-eclamptic placentae,” Placenta, vol. 24, no. 2-3, pp. 199–208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Sagawa, S. Yura, H. Itoh et al., “Possible role of placental leptin in pregnancy: a review,” Endocrine, vol. 19, no. 1, pp. 65–71, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. C. M. Anderson and J. Ren, “Leptin, leptin resistance and endothelial dysfunction in pre-eclampsia,” Cellular and Molecular Biology (Noisy-le-Grand), vol. 48, pp. OL323–OL329, 2002. View at Google Scholar · View at Scopus
  36. E. Domali and I. E. Messinis, “Leptin in pregnancy,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 12, no. 4, pp. 222–230, 2002. View at Google Scholar · View at Scopus
  37. L. Poston, “Leptin and preeclampsia,” Seminars in Reproductive Medicine, vol. 20, no. 2, pp. 131–138, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. N. A. Bersinger, N. Groome, and S. Muttukrishna, “Pregnancy-associated and placental proteins in the placental tissue of normal pregnant women and patients with pre-eclampsia at term,” European Journal of Endocrinology, vol. 147, no. 6, pp. 785–793, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Martinez-Abundis, M. Gonzalez-Ortiz, and S. Pascoe-Gonzalez, “Serum leptin levels the severity of preeclampsia,” Archives of Gynecology and Obstetrics, vol. 264, no. 2, pp. 71–73, 2000. View at Google Scholar · View at Scopus
  40. M. C. Henson and V. D. Castracane, “Leptin: roles and regulation in primate pregnancy,” Seminars in Reproductive Medicine, vol. 20, no. 2, pp. 113–121, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Bajoria, S. R. Sooranna, B. S. Ward, and R. Chatterjee, “Prospective function of placental leptin at maternal-fetal interface,” Placenta, vol. 23, no. 2-3, pp. 103–115, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Reimer, D. Koczan, B. Gerber, D. Richter, H. J. Thiesen, and K. Friese, “Microarray analysis of differentially expressed genes in placental tissue of pre-eclampsia: up-regulation of obesity-related genes,” Molecular Human Reproduction, vol. 8, no. 7, pp. 674–680, 2002. View at Google Scholar · View at Scopus
  43. D. A. Enquobahrie, M. Meller, K. Rice, B. M. Psaty, D. S. Siscovick, and M. A. Williams, “Differential placental gene expression in preeclampsia,” American Journal of Obstetrics and Gynecology, vol. 199, no. 5, pp. 566.e1–566.e11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Zhou, Q. Zhu, Y. Wang, Y. Ren, L. Zhang, and Y. Zhou, “Genomewide oligonucleotide microarray analysis on placentae of pre-eclamptic pregnancies,” Gynecologic and Obstetric Investigation, vol. 62, no. 2, pp. 108–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Nishizawa, K. Pryor-Koishi, T. Kato, H. Kowa, H. Kurahashi, and Y. Udagawa, “Microarray analysis of differentially expressed fetal genes in placental tissue derived from early and late onset severe pre-eclampsia,” Placenta, vol. 28, no. 5-6, pp. 487–497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. S. A. Founds, J. S. Dorman, and Y. P. Conley, “Microarray technology applied to the complex disorder of Preeclampsia,” Journal of Obstetric, Gynecologic, and Neonatal Nursing, vol. 37, no. 2, pp. 146–157, 2008. View at Publisher · View at Google Scholar · View at Scopus