Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 832341, 8 pages
http://dx.doi.org/10.1155/2010/832341
Methodology Report

Proposing Low-Similarity Peptide Vaccines against Mycobacterium tuberculosis

Department of Biochemistry and Molecular Biology “Ernesto Quagliariello”, University of Bari, Bari 70126, Italy

Received 23 September 2009; Revised 2 December 2009; Accepted 24 March 2010

Academic Editor: Yongqun Oliver He

Copyright © 2010 Guglielmo Lucchese et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. L. Corbett, C. J. Watt, N. Walker et al., “The growing burden of tuberculosis: global trends and interactions with the HIV epidemic,” Archives of Internal Medicine, vol. 163, no. 9, pp. 1009–1021, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. The World Health Organization Report, Global Tuberculosis Control, WHO, Geneva, Switzerland, 2009.
  3. P. E. M. Fine, “BCG: the challenge continues,” Scandinavian Journal of Infectious Diseases, vol. 33, no. 4, pp. 243–245, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Huygen, “DNA vaccines against mycobacterial diseases,” Future Microbiology, vol. 1, pp. 63–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Tanghe, J.-P. Dangy, G. Pluschke, and K. Huygen, “Improved protective efficacy of a species-specific DNA vaccine encoding mycolyl-transferase Ag85A from Mycobacterium ulcerans by homologous protein boosting,” PLoS Neglected Tropical Diseases, vol. 2, no. 3, article e199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. B. Meya and K. P. McAdam, “The TB pandemic: an old problem seeking new solutions,” Journal of Internal Medicine, vol. 261, no. 4, pp. 309–329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Nissapatorn, I. Kuppusamy, F. P. Josephine, I. Jamaiah, M. Rohela, and A. Khairul Anuar, “Tuberculosis: a resurgent disease in immunosuppressed patients,” The Southeast Asian Journal of Tropical Medicine and Public Health, vol. 37, supplement 3, pp. 153–160, 2006. View at Google Scholar
  8. F. Abebe and G. Bjune, “The protective role of antibody responses during Mycobacterium tuberculosis infection,” Clinical and Experimental Immunology, vol. 157, no. 2, pp. 235–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Xu, B. Zhu, Q. Wang et al., “Recombinant BCG coexpressing Ag85B, ESAT-6 and mouse-IFN-? confers effective protection against Mycobacterium tuberculosis in C57BL/6 mice,” FEMS Immunology and Medical Microbiology, vol. 51, no. 3, pp. 480–487, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Q. Qie, J. L. Wang, B. D. Zhu et al., “Evaluation of a new recombinant BCG which contains mycobacterial antigen ag85B-mpt64190-198-mtb8.4 in C57/BL6 mice,” Scandinavian Journal of Immunology, vol. 67, no. 2, pp. 133–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Chang-Hong, W. Xiao-Wu, Z. Hai, Z. Ting-Fen, W. Li-Mei, and X. Zhi-Kai, “Immune responses and protective efficacy of the gene vaccine expressing Ag85B and ESAT6 fusion protein from Mycobacterium tuberculosis,” DNA and Cell Biology, vol. 27, no. 4, pp. 199–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Hussain, H. M. Dockrell, and T. J. Chiang, “Dominant recognition of a cross-reactive B-cell epitope in Mycobacterium leprae 10 K antigen by immunoglobulin G1 antibodies across the disease spectrum in leprosy,” Immunology, vol. 96, no. 4, pp. 620–627, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. K. K. Singh, N. Sharma, D. Vargas et al., “Peptides of a novel Mycobacterium tuberculosis-specific cell wall protein for immunodiagnosis of tuberculosis,” Journal of Infectious Diseases, vol. 200, no. 4, pp. 571–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Baassi, K. Sadki, F. Seghrouchni et al., “Evaluation of a multi-antigen test based on B-cell epitope peptides for the serodiagnosis of pulmonary tuberculosis,” International Journal of Tuberculosis and Lung Disease, vol. 13, no. 7, pp. 848–854, 2009. View at Google Scholar · View at Scopus
  15. U. Gowthaman and J. N. Agrewala, “In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion,” Journal of Proteome Research, vol. 7, no. 1, pp. 154–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Blythe and D. R. Flower, “Benchmarking B cell epitope prediction: underperformance of existing methods,” Protein Science, vol. 14, no. 1, pp. 246–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Mittelman, A. Lucchese, A. A. Sinha, and D. Kanduc, “Monoclonal and polyclonal humoral immune response to EC HER-2/neu peptides with low similarity to the host's proteome,” International Journal of Cancer, vol. 98, no. 5, pp. 741–747, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Lucchese, A. Mittelman, M.-S. Lin, D. Kanduc, and A. A. Sinha, “Epitope definition by proteomic similarity analysis: identification of the linear determinant of the anti-Dsg3 MAb 5H10,” Journal of Translational Medicine, vol. 2, article 43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Tiwari, J. Geliebter, A. Lucchese, A. Mittelman, and D. Kanduc, “Computational peptide dissection of Melan-a/MART-1 oncoprotein antigenicity,” Peptides, vol. 25, no. 11, pp. 1865–1871, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Mittelman, R. Tiwari, G. Lucchese, J. Willers, R. Dummer, and D. Kanduc, “Identification of monoclonal anti-HMW-MAA antibody linear peptide epitope by proteomic database mining,” Journal of Investigative Dermatology, vol. 123, no. 4, pp. 670–675, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Dummer, A. Mittelman, F. P. Fanizzi, G. Lucchese, J. Willers, and D. Kanduc, “Non-self-discrimination as a driving concept in the identification of an immunodominant HMW-MAA epitopic peptide sequence by autoantibodies from melanoma cancer patients,” International Journal of Cancer, vol. 111, no. 5, pp. 720–726, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Lucchese, J. Willers, A. Mittelman, D. Kanduc, and R. Dummer, “Proteomic scan for tyrosinase peptide antigenic pattern in vitiligo and melanoma: role of sequence similarity and HLA-DR1 affinity,” Journal of Immunology, vol. 175, no. 10, pp. 7009–7020, 2005. View at Google Scholar · View at Scopus
  23. J. Willers, A. Lucchese, A. Mittelman, R. Dummer, and D. Kanduc, “Definition of anti-tyrosinase MAb T311 linear determinant by proteome-based similarity analysis,” Experimental Dermatology, vol. 14, no. 7, pp. 543–550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Stufano and D. Kanduc, “Proteome-based epitopic peptide scanning along PSA,” Experimental and Molecular Pathology, vol. 86, no. 1, pp. 36–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Kanduc, A. Lucchese, and A. Mittelman, “Individuation of monoclonal anti-HPV16 E7 antibody linear peptide epitope by computational biology,” Peptides, vol. 22, no. 12, pp. 1981–1985, 2001. View at Google Scholar · View at Scopus
  26. D. Kanduc, L. Tessitore, G. Lucchese, A. Kusalik, E. Farber, and F. M. Marincola, “Sequence uniqueness and sequence variability as modulating factors of human anti-HCV humoral immune response,” Cancer Immunology, Immunotherapy, vol. 57, no. 8, pp. 1215–1223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Lucchese, A. Stufano, and D. Kanduc, “Proteome-guided search for influenza A B-cell epitopes,” FEMS Immunology and Medical Microbiology, vol. 57, no. 1, pp. 88–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Kanduc, ““Self-nonself” peptides in the design of vaccines,” Current Pharmaceutical Design, vol. 15, no. 28, pp. 3283–3289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Peters, J. Sidney, P. Bourne et al., “The immune epitope database and analysis resource: from vision to blueprint,” PLoS Biology, vol. 3, no. 3, article e91, 2005. View at Google Scholar
  30. M. J. Blythe, Q. Zhang, K. Vaughan et al., “An analysis of the epitope knowledge related to Mycobacteria,” Immunome Research, vol. 3, no. 1, article 10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Chakhaiyar, Y. Nagalakshmi, B. Aruna, K. J. R. Murthy, V. M. Katoch, and S. E. Hasnain, “Regions of high antigenicity within the hypothetical PPE major polymorphic tandem repeat open-reading frame, Rv2608, show a differential humoral response and a low T cell response in various categories of patients with tuberculosis,” Journal of Infectious Diseases, vol. 190, no. 7, pp. 1237–1244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. A. C. W. May, “Percent sequence identity: the need to be explicit,” Structure, vol. 12, no. 5, pp. 737–738, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. M. B. A. Oldstone, “Molecular mimicry and immune-mediated diseases,” FASEB Journal, vol. 12, no. 13, pp. 1255–1265, 1998. View at Google Scholar · View at Scopus
  34. G. Lucchese, A. Stufano, B. Trost, A. Kusalik, and D. Kanduc, “Peptidology: short amino acid modules in cell biology and immunology,” Amino Acids, vol. 33, no. 4, pp. 703–707, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. W. Wu, L.-S. Yeh, H. Huang et al., “The protein information resource,” Nucleic Acids Research, vol. 31, no. 1, pp. 345–347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Hussain, F. Shahid, S. Zafar, M. Dojki, and H. M. Dockrell, “Immune profiling of leprosy and tuberculosis patients to 15-mer peptides of Mycobacterium leprae and M. tuberculosis GroES in a BCG vaccinated area: implications for development of vaccine and diagnostic reagents,” Immunology, vol. 111, no. 4, pp. 462–471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Chua-Intra, S. Peerapakorn, N. Davey et al., “T-cell recognition of mycobacterial GroES peptides in Thai leprosy patients and contacts,” Infection and Immunity, vol. 66, no. 10, pp. 4903–4909, 1998. View at Google Scholar · View at Scopus
  38. B. Chua-Intra, J. Ivanyi, A. Hills, J. Thole, C. Moreno, and H. M. Vordermeier, “Predominant recognition of species-specific determinants of the GroES homologues from Mycobacterium leprae and M. tuberculosis,” Immunology, vol. 93, no. 1, pp. 64–72, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Chua-Intra, R. J. Wilkinson, and J. Ivanyi, “Selective T-cell recognition of the N-terminal peptide of GroES in tuberculosis,” Infection and Immunity, vol. 70, no. 3, pp. 1645–1647, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Harboe, A. S. Malin, H. S. Dockrell et al., “B-cell epitopes and quantification of the ESAT-6 protein of Mycobacterium tuberculosis,” Infection and Immunity, vol. 66, no. 2, pp. 717–723, 1998. View at Google Scholar · View at Scopus
  41. A. Elsaghier, R. Lathigra, and J. Ivanyi, “Localisation of linear epitopes at the carboxy-terminal end of the mycobacterial 71 kDa heat shock protein,” Molecular Immunology, vol. 29, no. 9, pp. 1153–1156, 1992. View at Publisher · View at Google Scholar · View at Scopus
  42. J. S. Spencer, H. J. Kim, A. M. Marques et al., “Comparative analysis of B- and T-cell epitopes of Mycobacterium leprae and Mycobacterium tuberculosis culture filtrate protein 10,” Infection and Immunity, vol. 72, no. 6, pp. 3161–3170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. P. W. Roche, C. G. Feng, and W. J. Britton, “Human T-cell epitopes on the Mycobacterium tuberculosis secreted protein MPT64,” Scandinavian Journal of Immunology, vol. 43, no. 6, pp. 662–670, 1996. View at Google Scholar · View at Scopus
  44. D. P. Harris, H.-M. Vordermeier, A. Arya, K. Bogdan, C. Moreno, and J. Ivanyi, “Immunogenicity of peptides for B cells is not impaired by overlapping T-cell epitope topology,” Immunology, vol. 88, no. 3, pp. 348–354, 1996. View at Google Scholar · View at Scopus
  45. K. R. Ashbridge, B. T. Bäckström, H.-X. Liu et al., “Mapping of T helper cell epitopes by using peptides spanning the 19-kDa protein of Mycobacterium tuberculosis: evidence for unique and shared epitopes in the stimulation of antibody and delayed-type hypersensitivity responses,” Journal of Immunology, vol. 148, no. 7, pp. 2248–2255, 1992. View at Google Scholar · View at Scopus
  46. J. C. Falla, C. A. Parra, M. Mendoza et al., “Identification of B- and T-cell epitopes within the MTP40 protein of Mycobacterium tuberculosis and their correlation with the disease course,” Infection and Immunity, vol. 59, no. 7, pp. 2265–2273, 1991. View at Google Scholar · View at Scopus
  47. K. A. L. De Smet, H. M. Vordermeier, and J. Ivanyi, “A versatile system for the production of recombinant chimeric peptides,” Journal of Immunological Methods, vol. 177, no. 1-2, pp. 243–250, 1994. View at Publisher · View at Google Scholar · View at Scopus
  48. H.-M. Vordermeier, D. P. Harris, C. Moreno, M. Singh, and J. Ivanyi, “The nature of the immunogen determines the specificity of antibodies and T cells to selected peptides of the 38 kDa mycobacterial antigen,” International Immunology, vol. 7, no. 4, pp. 559–566, 1995. View at Google Scholar
  49. Y. López-Vidal, S. P. de León-Rosales, M. Castañón-Arreola, M. S. Rangel-Frausto, E. Meléndez-Herrada, and E. Sada-Díaz, “Response of IFN-γ and IgG to ESAT-6 and 38 kDa recombinant proteins and their peptides from Mycobacterium tuberculosis in tuberculosis patients and asymptomatic household contacts may indicate possible early-stage infection in the latter,” Archives of Medical Research, vol. 35, no. 4, pp. 308–317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Shams, P. Klucar, S. E. Weis et al., “Characterization of a Mycobacterium tuberculosis peptide that is recognized by human CD4+ and CD8+ T cells in the context of multiple HLA alleles,” Journal of Immunology, vol. 173, no. 3, pp. 1966–1977, 2004. View at Google Scholar · View at Scopus
  51. A. S. Mustafa, F. A. Shaban, R. Al-Attiyah et al., “Human Th1 cell lines recognize the Mycobacterium tuberculosis ESAT-6 antigen and its peptides in association with frequently expressed HLA class II molecules,” Scandinavian Journal of Immunology, vol. 57, no. 2, pp. 125–134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. D. P. Harris, H. M. Vordermeier, G. Friscia et al., “Genetically permissive recognition of adjacent epitopes from the 19-kDa antigen of Mycobacterium tuberculosis by human and murine T cells,” Journal of Immunology, vol. 150, no. 11, pp. 5041–5050, 1993. View at Google Scholar · View at Scopus
  53. D. B. Young, “The immune response to mycobacterial heat shock proteins,” Autoimmunity, vol. 7, no. 4, pp. 237–244, 1990. View at Google Scholar · View at Scopus
  54. T. M. Shinnick, “Heat shock proteins as antigens of bacterial and parasitic pathogens,” Current Topics in Microbiology and Immunology, vol. 167, pp. 145–160, 1991. View at Google Scholar
  55. D. B. Young and T. R. Garbe, “Heat shock proteins and antigens of Mycobacterium tuberculosis,” Infection and Immunity, vol. 59, no. 9, pp. 3086–3093, 1991. View at Google Scholar · View at Scopus
  56. C. Oseroff, B. Peters, V. Pasquetto et al., “Dissociation between epitope hierarchy and immunoprevalence in CD8 responses to vaccinia virus western reserve,” Journal of Immunology, vol. 180, no. 11, pp. 7193–7202, 2008. View at Google Scholar · View at Scopus
  57. D. A. Winkler and F. R. Burden, “Nonlinear predictive modeling of MHC class II-peptide binding using Bayesian neural networks,” Methods in Molecular Biology, vol. 409, pp. 365–377, 2007. View at Google Scholar · View at Scopus
  58. D. P. Harris, M. Hill, H.-M. Vordermeier et al., “Mutagenesis of an immunodominant Y cell epitope can affect recognition of different T and B determinants within the same antigen,” Molecular Immunology, vol. 34, no. 4, pp. 315–322, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. J. B. Rothbard and M. L. Gefter, “Interactions between immunogenic peptides and MHC proteins,” Annual Review of Immunology, vol. 9, pp. 527–565, 1991. View at Google Scholar
  60. M. J. Reddehase, J. B. Rothbard, and U. H. Koszinowski, “A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes,” Nature, vol. 337, no. 6208, pp. 651–653, 1989. View at Google Scholar · View at Scopus
  61. B. Hemmer, T. Kondo, B. Gran et al., “Minimal peptide length requirements for CD4+ T cell clones—implications for molecular mimicry and T cell survival,” International Immunology, vol. 12, no. 3, pp. 375–383, 2000. View at Google Scholar · View at Scopus
  62. H. L. Niman, R. A. Houghten, L. E. Walker et al., “Generation of protein-reactive antibodies by short peptides is an event of high frequency: implications for the structural basis of immune recognition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 16, pp. 4949–4953, 1983. View at Google Scholar · View at Scopus
  63. W. Schmidt, M. Buschle, W. Zauner et al., “Cell-free tumor antigen peptide-based cancer vaccines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 7, pp. 3262–3267, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. M. K. Gjertsen, J. Bjorheim, I. Saeterdal, J. Myklebust, and G. Gaudernack, “Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12Val) peptide vaccination of a patient, recognize 12Val-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation,” International Journal of Cancer, vol. 72, no. 5, pp. 784–790, 1997. View at Google Scholar · View at Scopus
  65. A. D. Gritzapis, A. Fridman, S. A. Perez et al., “HER-2/neu (657-665) represents an immunogenic epitope of HER-2/neu oncoprotein with potent antitumor properties,” Vaccine, vol. 28, no. 1, pp. 162–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Askelöf, K. Rodmalm, G. Wrangsell et al., “Protective immunogenicity of two synthetic peptides selected from the amino acid sequence of Bordetella pertussis toxin subunit S1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 4, pp. 1347–1351, 1990. View at Google Scholar · View at Scopus
  67. J. M. Calvo-Calle, G. A. Oliveira, C. O. Watta, J. Soverow, C. Parra-Lopez, and E. H. Nardin, “A linear peptide containing minimal T- and B-cell epitopes of Plasmodium falciparum circumsporozoite protein elicits protection against transgenic sporozoite challenge,” Infection and Immunity, vol. 74, no. 12, pp. 6929–6939, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Farsinejad, M. Daneshpazhooh, H. Sairafi, M. Barzegar, and M. Mortazavizadeh, “Lupus vulgaris at the site of BCG vaccination: report of three cases,” Clinical and Experimental Dermatology, vol. 34, no. 5, pp. e167–e169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Enserink, “Public health: in the HIV era, an old TB vaccine causes new problems,” Science, vol. 318, no. 5853, p. 1059, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Attia, “BCG vaccine-induced lupus vulgaris,” European Journal of Dermatology, vol. 17, no. 6, pp. 547–548, 2007. View at Google Scholar · View at Scopus
  71. A. Hristea, A. Neacsu, D. A. Ion, A. Streinu-Cercel, and F. Stăniceanu, “BCG-related granulomatous hepatitis,” Pneumologia, vol. 56, no. 1, pp. 32–34, 2007. View at Google Scholar · View at Scopus
  72. A. Mandavilli, “When the vaccine causes disease,” Nature Medicine, vol. 13, no. 3, p. 274, 2007. View at Google Scholar · View at Scopus
  73. A. Spratt, T. Key, and A. J. Vivian, “Chronic anterior uveitis following bacille Calmette-Guérin vaccination: molecular mimicry in action?” Journal of Pediatric Ophthalmology and Strabismus, vol. 45, no. 4, pp. 252–253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Kanduc, “Epitopic peptides with low similarity to the host proteome: towards biological therapies without side effects,” Expert Opinion on Biological Therapy, vol. 9, no. 1, pp. 45–53, 2009. View at Publisher · View at Google Scholar · View at Scopus